Skip to main content
Log in

Cell growth potential drives ferroptosis susceptibility in rhabdomyosarcoma and myoblast cell lines

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Ferroptosis is a programmed form of iron-dependent cell death caused by lipid hydroperoxide accumulation, which can be prevented by glutathione peroxidase 4 (GPx4) activity. Here we investigated the effects of ferroptosis inducers called erastin and RSL3, which act by glutathione depletion and GPx4 inactivation, respectively, on muscle-derived cell lines of embryonal and alveolar rhabdomyosarcoma (RMS), and mouse normal skeletal C2C12 myoblasts.

Methods

Myogenic lines were exposed to stepwise increasing concentrations of ferroptosis inducers either alone or in combination with iron supplementation, iron chelating agents (bathophenanthrolinedisulfonic acid, BPS), antioxidant molecules (glutathione, N-acetylcysteine), lipid peroxidation inhibitors (ferrostatin-1), and chemotherapeutic agents (doxorubicin and actinomycin D). Drug susceptibility was quantified by measuring cell viability, proliferation and differentiation via neutral red assay, crystal violet assay and Giemsa staining, respectively. The detection of lipid hydroperoxide and protein levels was performed by immunofluorescence and Western blot analysis, respectively.

Results

Erastin and RSL3 increased lipid hydroperoxide levels preferentially in the embryonal U57810 and myoblast C2C12 lines, leading to ferroptosis that was accentuated by iron supplementation or prevented by co-treatment with BPS, glutathione, N-acetylcysteine and ferrostatin-1. The inhibition of extracellular regulated kinases (ERK) pathway prevented ferroptosis in U57810 and C2C12 cells, whereas its increased activation in the embryonal RD cells mediated by caveolin-1 (Cav-1) overexpression led to augmented ferroptosis susceptibility. Finally, we observed the combination of erastin or RSL3 with chemotherapeutic doxorubicin and actinomycin D agents to be effective in increasing cell death in all RMS lines.

Conclusions

Erastin and RSL3 trigger ferroptosis in highly proliferating myogenic lines through a ERK pathway-dependent fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adelman R, Saul RL, Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 85:2706–2708

    Article  PubMed  CAS  Google Scholar 

  • Borinstein SC, Steppan D, Hayashi M, Loeb DM, Isakoff MS, Binitie O, Brohl AS, Bridge JA, Stavas M, Shinohara ET et al (2018) Consensus and controversies regarding the treatment of rhabdomyosarcoma. Pediatr Blood Cancer 65:e26809

    Article  Google Scholar 

  • Breuer W, Shvartsman M, Cabantchik ZI (2008) Intracellular labile iron. Int J Biochem Cell Biol 40:350–354

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Yeramian P, Madaule P, Tavitian A (1985) N-ras gene activation in the RD human rhabdomyosarcoma cell line. Int J Cancer 35:647–652

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Stewart E, Shelat AA, Qu C, Bahrami A, Hatley M, Wu G, Bradley C, McEvoy J, Pappo A et al (2013) Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell 24:710–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Hambright WS, Na R, Ran Q (2015) Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 290:28097–28106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciccarelli C, Marampon F, Scoglio A, Mauro A, Giacinti C, De Cesaris P, Zani BM (2005) p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells. Mol Cancer 4:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciccarelli C, Vulcano F, Milazzo L, Gravina GL, Marampon F, Macioce G, Giampaolo A, Tombolini V, Di Paolo V, Hassan HJ et al (2016) Key role of MEK/ERK pathway in sustaining tumorigenicity and in vitro radioresistance of embryonal rhabdomyosarcoma stem-like cell population. Mol Cancer 15:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corna G, Caserta I, Monno A, Apostoli P, Manfredi AA, Camaschella C, Rovere-Querini P (2016) The repair of skeletal muscle requires iron recycling through macrophage ferroportin. J Immunol 197:1914–1925

    Article  PubMed  CAS  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, Bastide M, Laloux C, Moreau C, Bordet R et al (2016) Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 94:169–178

    Article  PubMed  CAS  Google Scholar 

  • Dolgikh N, Fulda S (2017) Rhabdomyosarcoma cells are susceptible to cell death by LDK378 alone or in combination with sorafenib independently of anaplastic lymphoma kinase status. Anticancer Drugs 28:1118–1125

    Article  PubMed  CAS  Google Scholar 

  • Doll S, Conrad M (2017) Iron and ferroptosis: a still ill-defined liaison. IUBMB Life 69:423–434

    Article  PubMed  CAS  Google Scholar 

  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3:285–296

    Article  PubMed  CAS  Google Scholar 

  • El Haddad M, Jean E, Turki A, Hugon G, Vernus B, Bonnieu A, Passerieux E, Hamade A, Mercier J, Laoudj-Chenivesse D et al (2012) Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival. J Cell Sci 125:6147–6156

    Article  PubMed  CAS  Google Scholar 

  • Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2:517–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Faggi F, Mitola S, Sorci G, Riuzzi F, Donato R, Codenotti S, Poliani PL, Cominelli M, Vescovi R, Rossi S et al (2014) Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma. PLoS One 9:e84618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fanzani A, Poli M (2017) Iron, oxidative damage and ferroptosis in rhabdomyosarcoma. Int J Mol Sci 18:1718

    Article  PubMed Central  Google Scholar 

  • Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191

    Article  PubMed  CAS  Google Scholar 

  • Fulle S, Di Donna S, Puglielli C, Pietrangelo T, Beccafico S, Bellomo R, Protasi F, Fanò G (2005) Age-dependent imbalance of the antioxidative system in human satellite cells. Exp Gerontol 40:189–197

    Article  PubMed  CAS  Google Scholar 

  • Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ, Emanuel BS, Rovera G, Barr FG (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230–235

    Article  PubMed  CAS  Google Scholar 

  • Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482:419–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gravina GL, Festuccia C, Popov VM, Di Rocco A, Colapietro A, Sanità P, Monache SD, Musio D, De Felice F, Di Cesare E et al (2016) c-Myc sustains transformed phenotype and promotes radioresistance of embryonal rhabdomyosarcoma cell lines. Radiat Res 185:411–422

    Article  PubMed  CAS  Google Scholar 

  • Greenshields AL, Shepherd TG, Hoskin DW (2017) Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog 56:75–93

    Article  PubMed  CAS  Google Scholar 

  • Habermann KJ, Grünewald L, van Wijk S, Fulda S (2017) Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death. Cell Death Dis 8:e3067

    Article  PubMed  PubMed Central  Google Scholar 

  • Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL et al (2017) Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551:247–250

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heirman I, Ginneberge D, Brigelius-Flohé R, Hendrickx N, Agostinis P, Brouckaert P, Rottiers P, Grooten J (2006) Blocking tumor cell eicosanoid synthesis by GPx4 impedes tumor growth and malignancy. Free Radic Biol Med 40:285–294

    Article  PubMed  CAS  Google Scholar 

  • Ignatius MS, Chen E, Elpek NM, Fuller AZ, Tenente IM, Clagg R, Liu S, Blackburn JS, Linardic CM, Rosenberg AE et al (2012) In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 21:680–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda Y, Imao M, Satoh A, Watanabe H, Hamano H, Horinouchi Y, Izawa-Ishizawa Y, Kihira Y, Miyamoto L, Ishizawa K et al (2016) Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J Trace Elem Med Biol 35:66–76

    Article  PubMed  CAS  Google Scholar 

  • Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90

    Article  PubMed  CAS  Google Scholar 

  • Keller C, Guttridge DC (2013) Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS J 280:4323–4334

    Article  PubMed  CAS  Google Scholar 

  • Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR (2004) Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18:2614–2626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon LICP (2007) Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21:1382–1395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R (2017) Redox control of skeletal muscle regeneration. Antioxid Redox Signal 27:276–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S, Shin HS, Shireman PK, Vasilaki A, Van Remmen H, Csete ME (2006) Glutathione-peroxidase-1 null muscle progenitor cells are globally defective. Free Radic Biol Med 41:1174–1184

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C et al (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2:e90777

    Article  PubMed  PubMed Central  Google Scholar 

  • Linardic CM, Downie DL, Qualman S, Bentley RC, Counter CM (2005) Genetic modeling of human rhabdomyosarcoma. Cancer Res 65:4490–4495

    Article  PubMed  CAS  Google Scholar 

  • Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS et al (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 111:16836–16841

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Du J, Zhang Y, Sun W, Smith BJ, Oberley LW, Cullen JJ (2006) Suppression of the malignant phenotype in pancreatic cancer by overexpression of phospholipid hydroperoxide glutathione peroxidase. Hum Gene Ther 17:105–116

    Article  PubMed  CAS  Google Scholar 

  • Lollini PL, De Giovanni C, Landuzzi L, Nicoletti G, Scotlandi K, Nanni P (1991) Reduced metastatic ability of in vitro differentiated human rhabdomyosarcoma cells. Invasion Metastasis 11:116–124

    PubMed  CAS  Google Scholar 

  • Maiorino M, Thomas JP, Girotti AW, Ursini F (1991) Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides. Free Radic Res Commun 12–13(Pt 1):131–135

    Article  Google Scholar 

  • Maldonado EN, Sheldon KL, DeHart DN, Patnaik J, Manevich Y, Townsend DM, Bezrukov SM, Rostovtseva TK, Lemasters JJ (2013) Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. J Biol Chem 288:11920–11929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marampon F, Ciccarelli C, Zani BM (2006) Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Mol Cancer 5:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marampon F, Bossi G, Ciccarelli C, Di Rocco A, Sacchi A, Pestell RG, Zani BM (2009) MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma. Mol Cancer Ther 8:543–551

    Article  PubMed  CAS  Google Scholar 

  • Mauro A, Ciccarelli C, De Cesaris P, Scoglio A, Bouché M, Molinaro M, Aquino A, Zani BM (2002) PKC alpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. J Cell Sci 115:3587–3599

    Article  PubMed  CAS  Google Scholar 

  • Megiorni F, Camero S, Ceccarelli S, McDowell HP, Mannarino O, Marampon F, Pizer B, Shukla R, Pizzuti A, Marchese C et al (2016) DNMT3B in vitro knocking-down is able to reverse embryonal rhabdomyosarcoma cell phenotype through inhibition of proliferation and induction of myogenic differentiation. Oncotarget 7:79342–79356

    Article  PubMed  PubMed Central  Google Scholar 

  • Moraes LH, de Burgos RR, Macedo AB, de Almeida Hermes T, de Faria FM, Minatel E (2015) Reduction of oxidative damage and inflammatory response in the diaphragm muscle of mdx mice using iron chelator deferoxamine. Biol Trace Elem Res 167:115–120

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, Murphy JM, Kunzendorf U, Krautwald S (2017) Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci 74:3631–3645

    Article  CAS  Google Scholar 

  • Ognjanovic S, Linabery AM, Charbonneau B, Ross JACP (2009) Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer 115:4218–4226

    Article  PubMed  PubMed Central  Google Scholar 

  • Pallafacchina G, François S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M (2010) An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 4:77–91

    Article  PubMed  CAS  Google Scholar 

  • Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pannérec A, Marazzi G, Sassoon D (2012) Stem cells in the hood: the skeletal muscle niche. Trends Mol Med 18:599–606

    Article  PubMed  CAS  Google Scholar 

  • Parham DM, Barr FG (2013) Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol 20:387–397

    Article  PubMed  CAS  Google Scholar 

  • Ran Q, Liang H, Gu M, Qi W, Walter CA, Roberts LJ, Herman B, Richardson A, Van Remmen H (2004) Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279:55137–55146

    Article  PubMed  CAS  Google Scholar 

  • Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ, Wolf N, Van Remmen H, VanRemmen H, Richardson A (2007) Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci 62:932–942

    Article  PubMed  Google Scholar 

  • Rangarajan A, Weinberg RA (2003) Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3:952–959

    Article  PubMed  CAS  Google Scholar 

  • Razaghi A, Heimann K, Schaeffer PM, Gibson SB (2018) Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis 23:93–112

    Article  PubMed  CAS  Google Scholar 

  • Rubin BP, Nishijo K, Chen HI, Yi X, Schuetze DP, Pal R, Prajapati SI, Abraham J, Arenkiel BR, Chen QR et al (2011) Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. Cancer Cell 19:177–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saini M, Verma A, Mathew SJ (2018) SPRY2 is a novel MET interactor that regulates metastatic potential and differentiation in rhabdomyosarcoma. Cell Death Dis 9:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC (2009) Redox control of the cell cycle in health and disease. Antioxid Redox Signal 11:2985–3011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schott C, Graab U, Cuvelier N, Hahn H, Fulda S (2015) Oncogenic RAS mutants confer resistance of RMS13 rhabdomyosarcoma cells to oxidative stress-induced ferroptotic cell death. Front Oncol 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Rådmark O, Wurst W et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248

    Article  PubMed  CAS  Google Scholar 

  • Shah R, Shchepinov MS, Pratt DA (2018) Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci 4:387–396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW (1993) Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res 53:5108–5112

    PubMed  CAS  Google Scholar 

  • Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, Ambrogio L, Auclair D, Wang J, Song YK et al (2014) Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 4:216–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Short SP, Williams CS (2017) Selenoproteins in tumorigenesis and cancer progression. Adv Cancer Res 136:49–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stratton MR, Fisher C, Gusterson BA, Cooper CS (1989) Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res 49:6324–6327

    PubMed  CAS  Google Scholar 

  • Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176

    Article  PubMed  CAS  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113:E4966–E4975

    Article  PubMed  CAS  Google Scholar 

  • Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A, Prolla TA (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502

    Article  PubMed  CAS  Google Scholar 

  • Zanola A, Rossi S, Faggi F, Monti E, Fanzani A (2012) Rhabdomyosarcomas: an overview on the experimental animal models. J Cell Mol Med 16:1377–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR (2017) Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke 48:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Brescia (ex 60%) and Siderurgica Leonessa research funds to AF. We are grateful to Associazione Garda Vita for granting MA and Umberto Veronesi Foundation for granting FM with Post-doctoral Fellowship year-2018 Award.

Author information

Authors and Affiliations

Authors

Contributions

SC, MP, and AF planned experiments; SC, MA, and DZ performed experiments; SC, MP, FM, and AF analyzed data; AF wrote the paper.

Corresponding author

Correspondence to Alessandro Fanzani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codenotti, S., Poli, M., Asperti, M. et al. Cell growth potential drives ferroptosis susceptibility in rhabdomyosarcoma and myoblast cell lines. J Cancer Res Clin Oncol 144, 1717–1730 (2018). https://doi.org/10.1007/s00432-018-2699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-018-2699-0

Keywords

Navigation