Skip to main content
Log in

Dynamical intrinsic functional architecture of the brain during absence seizures

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Epilepsy is characterized by recurrent and temporary brain dysfunction due to discharges of interconnected groups of neurons. The brain of epilepsy patients has a dynamic bifurcation that switches between epileptic and normal states. The dysfunctional state involves large-scale brain networks. It is very important to understand the network mechanisms of seizure initiation, maintenance, and termination in epilepsy. Absence epilepsy provides a unique model for neuroimaging investigation on dynamic evolutions of brain networks over seizure repertoire. By using a dynamic functional connectivity and graph theoretical analyses to study absence seizures (AS), we aimed to obtain transition of network properties that account for seizure onset and offset. We measured resting-state functional magnetic resonance imaging and simultaneous electroencephalography (EEG) from children with AS. We used simultaneous EEG to define the preictal, ictal and postictal intervals of seizures. We measured dynamic connectivity maps of the thalamus network and the default mode network (DMN), as well as functional connectome topologies, during the three different seizure intervals. The analysis of dynamic changes of anti-correlation between the thalamus and the DMN is consistent with an inhibitory effect of seizures on the default mode of brain function, which gradually fades out after seizure onset. Also, we observed complex transitions of functional network topology, implicating adaptive reconfiguration of functional brain networks. In conclusion, our work revealed novel insights into modifications in large-scale functional connectome during AS, which may contribute to a better understanding the network mechanisms of state bifurcations in epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2012) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex. doi:10.1093/cercor/bhs352

  • Archer JS, Abbott DF, Waites AB, Jackson GD (2003) fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage 20(4):1915–1922

    Article  PubMed  Google Scholar 

  • Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C et al (2010) Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci 30(17):5884–5893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523

    Article  PubMed  Google Scholar 

  • Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108(18):7641–7646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA, Capovilla G et al (2012) Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia 53(4):622–630

    Article  PubMed  Google Scholar 

  • Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N (2011) Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex 21(9):2147–2157

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  • Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46(Suppl 9):21–33

    Article  CAS  PubMed  Google Scholar 

  • Blumenfeld H (2012) Impaired consciousness in epilepsy. Lancet Neurol 11(9):814–826

    Article  PubMed Central  PubMed  Google Scholar 

  • Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–140

    Article  PubMed  Google Scholar 

  • Carney PW, Masterton RA, Harvey AS, Scheffer IE, Berkovic SF, Jackson GD (2010) The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology 75(10):904–911

    Article  CAS  PubMed  Google Scholar 

  • Carney PW, Masterton RA, Flanagan D, Berkovic SF, Jackson GD (2012) The frontal lobe in absence epilepsy: EEG-fMRI findings. Neurology 78(15):1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1):81–98

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349(13):1257–1266

    Article  PubMed  Google Scholar 

  • Chaudhary UJ, Duncan JS, Lemieux L (2013) Mapping hemodynamic correlates of seizures using fMRI: a review. Hum Brain Mapp 34(2):447–466

    Article  PubMed  Google Scholar 

  • Danielson NB, Guo JN, Blumenfeld H (2011) The default mode network and altered consciousness in epilepsy. Behav Neurol 24(1):55–65

    Article  PubMed Central  PubMed  Google Scholar 

  • David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C et al (2008) Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 6(12):2683–2697

    Article  CAS  PubMed  Google Scholar 

  • de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L et al (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci USA 107(13):6040–6045

    Google Scholar 

  • Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A et al (2013) Connectomics and epilepsy. Curr Opin Neurol 26(2):186–194

    Article  PubMed Central  PubMed  Google Scholar 

  • Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM et al (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5):e1000381

    Article  PubMed Central  PubMed  Google Scholar 

  • Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22

    PubMed Central  PubMed  Google Scholar 

  • Fornito A, Harrison BJ, Zalesky A, Simons JS (2012) Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc Natl Acad Sci USA 109(31):12788–12793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283

    Article  PubMed Central  PubMed  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878

    Article  PubMed  Google Scholar 

  • Gotman J (2008) Epileptic networks studied with EEG-fMRI. Epilepsia 49(Suppl 3):42–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA 102(42):15236–15240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H et al (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatr 62(5):429–437

    Article  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159

    Article  PubMed Central  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Gerhard S, Ellen Grant P, Wedeen V et al (2010) MR connectomics: principles and challenges. J Neurosci Methods 194(1):34–45

    Article  PubMed  Google Scholar 

  • Handwerker DA, Roopchansingh V, Gonzalez-Castillo J, Bandettini PA (2012) Periodic changes in fMRI connectivity. Neuroimage 63(3):1712–1719

    Article  PubMed Central  PubMed  Google Scholar 

  • He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H et al (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 4(4):e5226

    Article  PubMed Central  PubMed  Google Scholar 

  • Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS (2012) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp. doi:10.1002/hbm.22058

    PubMed  Google Scholar 

  • Kang J, Wang L, Yan C, Wang J, Liang X, He Y (2011) Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches. Neuroimage 56(3):1222–1234

    Article  PubMed  Google Scholar 

  • Killory BD, Bai X, Negishi M, Vega C, Spann MN, Vestal M et al (2011) Impaired attention and network connectivity in childhood absence epilepsy. Neuroimage 56(4):2209–2217

    Article  PubMed Central  PubMed  Google Scholar 

  • Kiviniemi V, Vire T, Remes J, Elseoud AA, Starck T, Tervonen O et al (2011) A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connect 1(4):339–347

    Article  PubMed  Google Scholar 

  • Kramer MA, Cash SS (2012) Epilepsy as a disorder of cortical network organization. Neuroscientist 18(4):360–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS (2010) Coalescence and fragmentation of cortical networks during focal seizures. J Neurosci 30(30):10076–10085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laufs H (2012) Functional imaging of seizures and epilepsy: evolution from zones to networks. Curr Opin Neurol 25(2):194–200

    Article  PubMed  Google Scholar 

  • Lee HL, Zahneisen B, Hugger T, LeVan P, Henning J (2013) Tracking dynamic resting-state networks at higher frequencies using MR-encephalography. Neuroimage 65:216–222

    Article  PubMed  Google Scholar 

  • Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X et al (2010) Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS ONE 5(1):e8525

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo C, Li Q, Lai Y, Xia Y, Qin Y, Liao W et al (2011) Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum Brain Mapp 32(3):438–449

    Article  PubMed  Google Scholar 

  • Luo C, Li Q, Xia Y, Lei X, Xue K, Yao Z et al (2012) Resting state basal ganglia network in idiopathic generalized epilepsy. Hum Brain Mapp 33(6):1279–1294

    Article  PubMed  Google Scholar 

  • Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O et al (2008a) Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage 39(4):1839–1849

    Article  PubMed  Google Scholar 

  • Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O et al (2008b) Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49(9):1510–1519

    Article  PubMed  Google Scholar 

  • Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M et al (2010) Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 51(10):2000–2010

    Article  PubMed Central  PubMed  Google Scholar 

  • Moeller F, Maneshi M, Pittau F, Gholipour T, Bellec P, Dubeau F et al (2011) Functional connectivity in patients with idiopathic generalized epilepsy. Epilepsia 52(3):515–522

    Article  PubMed Central  PubMed  Google Scholar 

  • Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130(Pt 2):314–333

    Article  PubMed  Google Scholar 

  • Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905

    Article  PubMed Central  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson MP (2012) Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry 83(12):1238–1248

    Article  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A et al (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2(1):25–32

    Article  PubMed Central  PubMed  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342

    Article  PubMed  Google Scholar 

  • Schindler KA, Bialonski S, Horstmann MT, Elger CE, Lehnertz K (2008) Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18(3):033119

    Article  PubMed  Google Scholar 

  • Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL (2010) The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 6(6):e1000808

    Article  PubMed Central  PubMed  Google Scholar 

  • Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive States with whole-brain connectivity patterns. Cereb Cortex 22(1):158–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43(3):219–227

    Article  PubMed  Google Scholar 

  • Sporns O (2011) The non-random brain: efficiency, economy, and complex dynamics. Front Comput Neurosci 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Stefan H, Lopes da Silva FH (2013) Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol 4(8). doi:10.3389/fneur.2013.00008

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    Article  CAS  PubMed  Google Scholar 

  • Vaessen MJ, Jansen JF, Vlooswijk MC, Hofman PA, Majoie HJ, Aldenkamp AP et al (2012) White matter network abnormalities are associated with cognitive decline in chronic epilepsy. Cereb Cortex 22(9):2139–2147

    Article  PubMed  Google Scholar 

  • Vlooswijk MC, Jansen JF, de Krom MC, Majoie HM, Hofman PA, Backes WH et al (2010) Functional MRI in chronic epilepsy: associations with cognitive impairment. Lancet Neurol 9(10):1018–1027

    Article  PubMed  Google Scholar 

  • Vlooswijk MC, Vaessen MJ, Jansen JF, de Krom MC, Majoie HJ, Hofman PA et al (2011) Loss of network efficiency associated with cognitive decline in chronic epilepsy. Neurology 77(10):938–944

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q et al (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30(5):1511–1523

    Article  PubMed  Google Scholar 

  • Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47(4):1408–1416

    Article  PubMed  Google Scholar 

  • Wu H, Li X, Guan X (2006) Networking property during epileptic seizure with multi-channel EEG recordings. In: Wang J (ed) Lecture Notes in Computer Science, vol. 3976, pp 573–578

  • Yang T, Luo C, Li Q, Guo Z, Liu L, Gong Q et al (2012) Altered resting-state connectivity during interictal generalized spike-wave discharges in drug-naive childhood absence epilepsy. Hum Brain Mapp. doi:10.1002/hbm.22025

    Google Scholar 

  • Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C et al (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50(3):970–983

    Article  PubMed  Google Scholar 

  • Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME (2008) Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol 100(4):1740–1748

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q et al (2011) Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134(Pt 10):2912–2928

    Article  PubMed  Google Scholar 

  • Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (Grant nos. 81201155, 81271553, 30971019, 81171328 and 81020108022), China Postdoctoral Science Foundation (Grant no. 2013M532229), Grants for Young Scholar in Jinling Hospital (Grant nos. Q2008063, 2011060), Swiss National Science Foundation (Grant no. 320030_146531) and Seventh Framework Programme of the European Commission (Grant no. PCIG12-334039).

Conflict of interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liao or Guangming Lu.

Additional information

W. Liao and Z. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 2872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, W., Zhang, Z., Mantini, D. et al. Dynamical intrinsic functional architecture of the brain during absence seizures. Brain Struct Funct 219, 2001–2015 (2014). https://doi.org/10.1007/s00429-013-0619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0619-2

Keywords

Navigation