Skip to main content

Advertisement

Log in

HIF-1α expression and high microvessel density are characteristic features in serrated colorectal cancer

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Serrated colorectal adenocarcinoma (SAC) is a morphologically distinct subtype of colorectal cancer (CRC), in which increased HIF-1α mRNA expression and HIF-1α protein stabilization are typical features. Here we aimed to further elucidate HIF-1α protein expression in serrated and non-serrated colorectal carcinomas (CRCs) and their precursor lesions and its association with vascular endothelial growth factor (VEGF) and microvascular density (MVD). HIF-1α and VEGF expressions were determined immunohistochemically in 134 serrated polyps (SPs), 104 non-serrated adenomas (NSAs), 81 SACs, and 74 matched conventional adenocarcinomas (CCs) and were correlated with morphology, clinicopathological features, and MVD. In premalignant lesions, both HIF-1α and VEGF were expressed in the vast majority of SPs and NSAs. In CRCs, HIF-1α protein was also present in 77.8 % of SACs, while only 20.3 % of CCs were HIF-1α proficient. MVD was significantly higher in SACs, but the serrated morphology was the only significant predictor of MVD in CRC in multivariate analyses. HIF-1α protein is often stabilized in well-vascularized SACs, suggesting hypoxia-independent stabilization of HIF-1α. Moreover, HIF-1α stabilization did not associate with oncogenic activation of BRAF or KRAS or Von Hippel-Lindau (VHL) mutation. Prevalent HIF-1α expression in SAC and its precursors support the importance of HIF-1α-mediated pathways for the serrated route of colorectal carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CC:

Conventional carcinoma

CRC:

Colorectal cancer

HIF:

Hypoxia-inducible transcription factor

HP:

Hyperplastic polyp

MVD:

Microvessel density

NSA:

Non-serrated adenoma

SP:

Serrated polyp

SAC:

Serrated adenocarcinoma

TSA:

Traditional serrated adenoma

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics. CA Cancer J Clin 64:9–29. doi:10.3322/caac.21208

    Article  PubMed  Google Scholar 

  2. Jass JR (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50:113–130. doi:10.1111/j.1365-2559.2006.02549.x

    Article  CAS  PubMed  Google Scholar 

  3. Tuppurainen K, Makinen JM, Junttila O, et al. (2005) Morphology and microsatellite instability in sporadic serrated and non-serrated colorectal cancer. J Pathol 207:285–294. doi:10.1002/path.1850

    Article  CAS  PubMed  Google Scholar 

  4. Laiho P, Kokko A, Vanharanta S, et al. (2007) Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis. Oncogene 26:312–320. doi:10.1038/sj.onc.1209778

    Article  CAS  PubMed  Google Scholar 

  5. Mäkinen MJ (2007) Colorectal serrated adenocarcinoma. Histopathology 50:131–150. doi:10.1111/j.1365-2559.2006.02548.x

    Article  PubMed  Google Scholar 

  6. O’Brien MJ, Yang S, Mack C, et al. (2006) Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol 30:1491–1501. doi:10.1097/01.pas.0000213313.36306.85

    Article  PubMed  Google Scholar 

  7. Stefanius K, Ylitalo L, Tuomisto A, et al. (2011) Frequent mutations of KRAS in addition to BRAF in colorectal serrated adenocarcinoma. Histopathology 58:679–692. doi:10.1111/j.1365-2559.2011.03821.x

    Article  PubMed  PubMed Central  Google Scholar 

  8. García-Solano J, Conesa-Zamora P, Carbonell P, et al. (2012) Colorectal serrated adenocarcinoma shows a different profile of oncogene mutations, MSI status and DNA repair protein expression compared to conventional and sporadic MSI-H carcinomas. Int J Cancer 131:1790–1799. doi:10.1002/ijc.27454

    Article  PubMed  Google Scholar 

  9. García-Solano J, Conesa-Zamora P, Trujillo-Santos J, et al. (2011) Tumour budding and other prognostic pathological features at invasive margins in serrated colorectal adenocarcinoma: a comparative study with conventional carcinoma. Histopathology 59:1046–1056. doi:10.1111/j.1365-2559.2011.04043.x

    Article  PubMed  Google Scholar 

  10. García-Solano J, Pérez-Guillermo M, Conesa-Zamora P, et al. (2010) Clinicopathologic study of 85 colorectal serrated adenocarcinomas: further insights into the full recognition of a new subset of colorectal carcinoma. Hum Pathol 41:1359–1368. doi:10.1016/j.humpath.2010.04.002

    Article  PubMed  Google Scholar 

  11. Zhong H, De Marzo AM, Laughner E, et al. (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    CAS  PubMed  Google Scholar 

  12. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634. doi:10.1038/onc.2009.441

    Article  CAS  PubMed  Google Scholar 

  13. Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402. doi:10.1016/j.molcel.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  14. Schödel J, Oikonomopoulos S, Ragoussis J, et al. (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–e217. doi:10.1182/blood-2010-10-314427

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kelly BD, Hackett SF, Hirota K, et al. (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081. doi:10.1161/01.RES.0000102937.50486.1B

    Article  CAS  PubMed  Google Scholar 

  16. Kikuchi H, Pino MS, Zeng M, et al. (2009) Oncogenic KRAS and BRAF differentially regulate hypoxia-inducible factor-1alpha and -2alpha in colon cancer. Cancer Res 69:8499–8506. doi:10.1158/0008-5472.CAN-09-2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhong H, Chiles K, Feldser D, et al. (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    CAS  PubMed  Google Scholar 

  18. Krieg M, Haas R, Brauch H, et al. (2000) Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19:5435–5443. doi:10.1038/sj.onc.1203938

    Article  CAS  PubMed  Google Scholar 

  19. Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671. doi:10.1172/JCI67230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hubbi ME, Kshitiz, Gilkes DM, et al. (2013) A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication. Sci Signal 6:ra10. doi:10.1126/scisignal.2003417

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaidi A, Williams AC, Paraskeva C (2007) Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9:210–217. doi:10.1038/ncb1534

    Article  CAS  PubMed  Google Scholar 

  22. Corn PG, Ricci MS, Scata KA, et al. (2005) Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol Ther 4:1285–1294

    Article  CAS  PubMed  Google Scholar 

  23. Conesa-Zamora P, García-Solano J, García-García F, et al. (2013) Expression profiling shows differential molecular pathways and provides potential new diagnostic biomarkers for colorectal serrated adenocarcinoma. Int J Cancer 132:297–307. doi:10.1002/ijc.27674

    Article  CAS  PubMed  Google Scholar 

  24. Conesa-Zamora P, García-Solano J, Turpin MDC, et al. (2015) Methylome profiling reveals functions and genes which are differentially methylated in serrated compared to conventional colorectal carcinoma. Clin Epigenetics 7:101. doi:10.1186/s13148-015-0128-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koukourakis MI, Giatromanolaki A, Sivridis E, et al. (2006) Lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway—a report of the tumour angiogenesis research group. J Clin Oncol 24:4301–4308. doi:10.1200/JCO.2006.05.9501

    Article  CAS  PubMed  Google Scholar 

  26. Righi A, Sarotto I, Casorzo L, et al. (2014) Tumour budding is associated with hypoxia at the advancing front of colorectal cancer. Histopathology. doi:10.1111/his.12602

    PubMed  Google Scholar 

  27. Saponaro C, Malfettone A, Ranieri G, et al. (2013) VEGF, HIF-1α expression and MVD as an angiogenic network in familial breast cancer. PLoS One 8:e53070. doi:10.1371/journal.pone.0053070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuwai T, Kitadai Y, Tanaka S, et al. (2004) Mutation of the von Hippel-Lindau (VHL) gene in human colorectal carcinoma: association with cytoplasmic accumulation of hypoxia-inducible factor (HIF)-1alpha. Cancer Sci 95:149–153

    Article  CAS  PubMed  Google Scholar 

  29. Miyakis S, Sourvinos G, Liloglou TL, et al. (2000) The von Hippel-Lindau (VHL) tumor-suppressor gene is not mutated in sporadic human colon adenocarcinomas. Int J Cancer 88:503–505

    Article  CAS  PubMed  Google Scholar 

  30. Morimoto T, Mitomi H, Saito T, et al. (2014) Distinct profile of HIF1α, PTCH, EphB2, or DNA repair protein expression and BRAF mutation in colorectal serrated adenoma. J Gastroenterol Hepatol 29:1192–1199. doi:10.1111/jgh.12553

    Article  CAS  PubMed  Google Scholar 

  31. Greijer AE, Delis-van Diemen PM, Fijneman RJA, et al. (2008) Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum. Virchows Arch 452:535–544. doi:10.1007/s00428-008-0578-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Z, He X, Xia W, et al. (2013) Prognostic value and clinicopathological differences of HIFs in colorectal cancer: evidence from meta-analysis. PLoS One 8:e80337. doi:10.1371/journal.pone.0080337

    Article  PubMed  PubMed Central  Google Scholar 

  33. Baba Y, Nosho K, Shima K, et al. (2010) HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol 176:2292–2301. doi:10.2353/ajpath.2010.090972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sivridis E (2005) Proliferating fibroblasts at the invading tumour edge of colorectal adenocarcinomas are associated with endogenous markers of hypoxia, acidity, and oxidative stress. J Clin Pathol 58:1033–1038. doi:10.1136/jcp.2005.026260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuschel A, Simon P, Tug S (2012) Functional regulation of HIF-1α under normoxia—is there more than post-translational regulation? J Cell Physiol 227:514–524. doi:10.1002/jcp.22798

    Article  CAS  PubMed  Google Scholar 

  36. Dimova EY, Kietzmann T (2010) Transcription factors. Methods Mol Biol. doi:10.1007/978-1-60761-738-9

    PubMed  Google Scholar 

  37. Kumar SM, Yu H, Edwards R, et al. (2007) Mutant V600E BRAF increases hypoxia inducible factor-1alpha expression in melanoma. Cancer Res 67:3177–3184. doi:10.1158/0008-5472.CAN-06-3312

    Article  CAS  PubMed  Google Scholar 

  38. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214. doi:10.1016/j.tips.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Staton CA, Chetwood ASA, Cameron IC, et al. (2007) The angiogenic switch occurs at the adenoma stage of the adenoma carcinoma sequence in colorectal cancer. Gut 56:1426–1432. doi:10.1136/gut.2007.125286

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Fundación para la Formación e Investigación Sanitarias from Healthcare Council of Murcia Region, Spain. We are grateful to Prof. Tuomo Karttunen for the fruitful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne Tuomisto or Pablo Conesa-Zamora.

Ethics declarations

Sources of funding

This work was supported by two grants from Instituto de Salud Carlos III, Ministerio de Sanidad, Spain (references PI08–1210 and PI12–1232) and grants from Academy of Finland (24,300,234), Emil Aaltonen Foundation, Finnish Cancer Foundation, and Northern Finland Cancer Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Anne Tuomisto and José García-Solano contributed equally to this work

Electronic supplementary material

ESM 1

(DOCX 11 kb)

ESM 2

(DOCX 12 kb)

ESM 3

(DOCX 11 kb)

ESM 4

(DOCX 11 kb)

ESM 5

(DOCX 16 kb)

ESM 6

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuomisto, A., García-Solano, J., Sirniö, P. et al. HIF-1α expression and high microvessel density are characteristic features in serrated colorectal cancer. Virchows Arch 469, 395–404 (2016). https://doi.org/10.1007/s00428-016-1988-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-016-1988-8

Keywords

Navigation