Skip to main content

Advertisement

Log in

Chronic inflammation in urothelial bladder cancer

  • Review and Perspectives
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The association between inflammation and cancer has been pointed out in epidemiological and clinical studies, revealing how chronic inflammation may contribute to carcinogenesis in various malignancies. However, the molecular events leading to malignant transformation in a chronically inflamed environment are not fully understood. In urothelial carcinoma of the urinary bladder, inflammation plays a dual role. On the one hand, chronic inflammation is a well-established risk factor for the development of bladder cancer (BC), as seen in Schistosoma haematobium infection. On the other, intravesical therapy by bacillus Calmette-Guérin (BCG), which induces inflammation, offers protection against cancer recurrence. The large variety of pro-inflammatory mediators expressed by BC and immune cells binds to specific receptors which control signalling pathways. These activate transcription of a plethora of downstream factors. This review summarizes recent data regarding inflammation and urothelial carcinoma, with special emphasis on the role the inflammatory response plays in BC recurrence risk and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leibovici D, Grossman HB, Dinney CP, Millikan RE, Lerner S, Wang Y, Gu J, Dong Q, Wu X (2005) Polymorphisms in inflammation genes and bladder cancer: from initiation to recurrence, progression, and survival. J Clin Oncol 23:5746–5756

    Article  CAS  PubMed  Google Scholar 

  2. Virchow R (1863) Cellular pathology as based upon physiological and pathological histology. J. B. Lippincott, Philadelphia

    Google Scholar 

  3. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  4. Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A, Sica A (2009) Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214:761–777

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  6. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:e359–e386

    Article  CAS  PubMed  Google Scholar 

  7. Cancer Research UK. Bladder cancer statistics. Available online at: http://www.cancerresearchuk.org/cancer-info/cancerstats/types/bladder/

  8. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Bladder Cancer V. I 2015

  9. Scosyrev E, Noyes K, Feng C, Messing E (2009) Sex and racial differences in bladder cancer presentation and mortality in the US. Cancer 115:68–74

    Article  PubMed  Google Scholar 

  10. International Agency for Research on Cancer (2011) Monographs on the evaluation of carcinogenic risks to humans. A review of carcinogen—part B: biological agents. International Agency for Research on Cancer, Lyon

    Google Scholar 

  11. Brandau S, Suttmann H (2007) Thirty years of BCG immunotherapy for non-muscle invasive bladder cancer: a success story with room for improvement. Biomed Pharmacother 61:299–305

    Article  CAS  PubMed  Google Scholar 

  12. Kawai K, Miyazaki J, Joraku A, Nishiyama H, Akaza H (2013) Bacillus Calmette-Guerin (BCG) immunotherapy for bladder cancer: current understanding and perspectives on engineered BCG vaccine. Cancer Sci 104:22–27

    Article  CAS  PubMed  Google Scholar 

  13. Fried B, Reddy A, Mayer D (2011) Helminths in human carcinogenesis. Cancer Lett 305:239–249

    Article  CAS  PubMed  Google Scholar 

  14. Abol-Enein H (2008) Infection: is it a cause of bladder cancer. Scand J Urol Nephrol 218(Suppl):79–84

    Article  CAS  Google Scholar 

  15. Badawi AF (1996) Molecular and genetic events in schistosomiasis-associated human bladder cancer: role of oncogenes and tumor suppressor genes. Cancer Lett 105:123–138

    Article  CAS  PubMed  Google Scholar 

  16. Rosin MP, Anwar WA, Ward AJ (1994) Inflammation, chromosomal instability, and cancer: the schistosomiasis model. Cancer Res 54(Suppl):1929s–1933s

    CAS  PubMed  Google Scholar 

  17. Mostafa MH, Sheweita SA, O’Connor PJ (1999) Relationship between schistosomiasis and bladder cancer. Clin Microbiol Rev 12:97–111

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Botelho MC, Oliveira PA, Lopes C, Correia da Costa JM, Machado JC (2011) Urothelial dysplasia and inflammation induced by Schistosoma haematobium total antigen instillation in mice normal urothelium. Urol Oncol 29:809–814

    Article  PubMed  Google Scholar 

  19. Botelho MC, Machado JC, da Costa JM (2010) Schistosoma haematobium and bladder cancer: what lies beneath? Virulence 1:84–87

    Article  PubMed  Google Scholar 

  20. Kantor AF, Hartge P, Hoover RN, Narayana AS, Sullivan JW, Fraumeni Jr JF (1984) Urinary tract infection and risk of bladder cancer. Am J Epidemiol 119:510–515

    CAS  PubMed  Google Scholar 

  21. Vermeulen SH, Hanum N, Grotenhuis AJ, Castano-Vinyals G, van der Heijden AG, Aben KK, Mysorekar IU, Kiemeney LA (2015) Recurrent urinary tract infection and risk of bladder cancer in the Nijmegen bladder cancer study. Br J Cancer 112:594–600

    Article  CAS  PubMed  Google Scholar 

  22. Dhakal BK, Kulesus RR, Mulvey MA (2008) Mechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coli. Eur J Clin Investig 38(Suppl 2):2–11 See comment in PubMed Commons below

    Article  CAS  Google Scholar 

  23. Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ (2010) Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6:e1001042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Song J, Abraham SN (2008) Innate and adaptive immune responses in the urinary tract. Eur J Clin Investig 38(Suppl 2):21–28

    Article  CAS  Google Scholar 

  25. Aquilina G, Bignami M (2001) Mismatch repair in correction of replication errors and processing of DNA damage. J Cell Physiol 187:145–154

    Article  CAS  PubMed  Google Scholar 

  26. Jiang X, Castelao JE, Groshen S, Cortessis VK, Shibata D, Conti DV, Yuan JM, Pike MC, Gago-Dominguez M (2009) Urinary tract infections and reduced risk of bladder cancer in Los Angeles. Br J Cancer 100:834–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zur Hausen H (2009) Papillomaviruses in the causation of human cancers—a brief historical account. Virology 384:260–265

    Article  CAS  PubMed  Google Scholar 

  28. Li N, Yang L, Zhang Y, Zhao P, Zheng T, Dai M (2011) Human papillomavirus infection and bladder cancer risk: a meta-analysis. J Infect Dis 204:217–223

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cai T, Mazzoli S, Meacci F, Nesi G, Geppetti P, Malossini G, Bartoletti R (2011) Human papillomavirus and non-muscle invasive urothelial bladder cancer: potential relationship from a pilot study. Oncol Rep 25:485–489

    Article  PubMed  Google Scholar 

  30. Shigehara K, Sasagawa T, Kawaguchi S, Nakashima T, Shimamura M, Maeda Y, Konaka H, Mizokami A, Koh E, Namiki M (2011) Etiologic role of human papillomavirus infection in bladder carcinoma. Cancer 117:2067–2076

    Article  CAS  PubMed  Google Scholar 

  31. Alexander RE, Davidson DD, Lopez-Beltran A, Montironi R, MacLennan GT, Comperat E, Idrees MT, Emerson RE, Cheng L (2013) Human papillomavirus is not an etiologic agent of urothelial inverted papillomas. Am J Surg Pathol 37:1223–1228

    Article  PubMed  Google Scholar 

  32. Youshya S, Purdie K, Breuer J, Proby C, Sheaf MT, Oliver RT, Baithun S (2005) Does human papillomavirus play a role in the development of bladder transitional cell carcinoma? A comparison of PCR and immunohistochemical analysis. J Clin Pathol 58:207–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lehoux M, D’Abramo CM, Archambault J (2009) Molecular mechanisms of human papillomavirus-induced carcinogenesis. Public Health Genomics 12:268–280

    Article  PubMed Central  PubMed  Google Scholar 

  34. Alexander RE, Hu Y, Kum JB, Montironi R, Lopez-Beltran A, MacLennan GT, Idrees MT, Emerson RE, Ulbright TM, Grignon DG, Eble JN, Cheng L (2012) p16 expression is not associated with human papillomavirus in urinary bladder squamous cell carcinoma. Mod Pathol 25:1526–1533

    Article  CAS  PubMed  Google Scholar 

  35. Kim SH, Joung JY, Chung J, Park WS, Lee KH, Seo HK (2014) Detection of human papillomavirus infection and p16 immunohistochemistry expression in bladder cancer with squamous differentiation. PLoS One 9:e93525

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Clouston D, Lawrentschuk N (2013) Metaplastic conditions of the bladder. BJU Int 112(Suppl 2):27–31

    Article  PubMed  Google Scholar 

  37. Groah SL, Weitzenkamp DA, Lammertse DP, Whiteneck GG, Lezotte DC, Hamman RF (2002) Excess risk of bladder cancer in spinal cord injury: evidence for an association between indwelling catheter use and bladder cancer. Arch Phys Med Rehabil 83:346–351

    Article  PubMed  Google Scholar 

  38. Kalisvaart JF, Katsumi HK, Ronningen LD, Hovey RM (2010) Bladder cancer in spinal cord injury patients. Spinal Cord 48:257–261

    Article  CAS  PubMed  Google Scholar 

  39. West DA, Cummings JM, Longo WE, Virgo KS, Johnson FE, Parra RO (1999) Role of chronic catheterization in the development of bladder cancer in patients with spinal cord injury. Urology 53:292–297

    Article  CAS  PubMed  Google Scholar 

  40. Lee WY, Sun LM, Lin CL, Liang JA, Chang YJ, Sung FC, Kao CH (2014) Risk of prostate and bladder cancers in patients with spinal cord injury: a population-based cohort study. Urol Oncol 32(51):e1–e7

    Article  PubMed  Google Scholar 

  41. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  CAS  PubMed  Google Scholar 

  42. Heusinkveld M, van der Burg SH (2011) Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 9:216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ohno S, Inagawa H, Dhar DK, Fujii T, Ueda S, Tachibana M, Suzuki N, Inoue M, Soma G, Nagasue N (2003) The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res 23:5015–5022

    PubMed  Google Scholar 

  44. Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23:8959–8967

    Article  PubMed  Google Scholar 

  45. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13:1472–1479

    Article  CAS  PubMed  Google Scholar 

  46. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, Kudoh S, Ochiai A (2008) Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV non-small cell lung cancer. Cancer 113:1387–1395

    Article  CAS  PubMed  Google Scholar 

  47. Dufresne M, Dumas G, Asselin E, Carrier C, Pouliot M, Reyes-Moreno C (2011) Pro-inflammatory type-1 and anti-inflammatory type-2 macrophages differentially modulate cell survival and invasion of human bladder carcinoma T24 cells. Mol Immunol 48:1556–1567

    Article  CAS  PubMed  Google Scholar 

  48. Yang H, Kim C, Mj K, Schwendener RA, Alitalo K, Heston W, Kim I, Kim WJ, Koh GY (2011) Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer. Mol Cancer 10:36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y (2000) Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 7:263–269

    Article  CAS  PubMed  Google Scholar 

  50. Takayama H, Nishimura K, Tsujimura A, Nakai Y, Nakayama M, Aozasa K, Okuyama A, Nonomura N (2009) Increased infiltration of tumor associated macrophages is associated with poor prognosis of bladder carcinoma in situ after intravesical bacillus Calmette-Guerin instillation. J Urol 181:1894–1900

    Article  CAS  PubMed  Google Scholar 

  51. Ayari C, LaRue H, Hovington H, Caron A, Bergeron A, Tetu B, Fradet V, Fradet Y (2013) High level of mature tumor-infiltrating dendritic cells predicts progression to muscle invasion in bladder cancer. Hum Pathol 44:1630–1637

    Article  CAS  PubMed  Google Scholar 

  52. Masson-Lecomte A, Rava M, Real FX, Hartmann A, Allory Y, Malats N (2014) Inflammatory biomarkers and bladder cancer prognosis: a systematic review. Eur Urol 66:1078–1091

    Article  CAS  PubMed  Google Scholar 

  53. Marx J (2008) Cancer immunology. Cancer’s bulwark against immune attack: MDS cells. Science 319:154–156

    Article  CAS  PubMed  Google Scholar 

  54. Eruslanov E, Daurkin I, Vieweg J, Daaka Y, Kusmartsev S (2011) Aberrant PGE2 metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells. Int Immunopharmacol 11:848–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Fridlender ZG, Sun J, Singhal S, Kapoor V, Cheng G, Suzuki E, Albelda SM (2010) Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Mol Ther 18:1947–1959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Liakou CI, Narayanan S, Ng Tang D, Logothetis CJ, Sharma P (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human bladder cancer. Cancer Immun 7:10

    PubMed Central  PubMed  Google Scholar 

  57. Winerdal ME, Marits P, Winerdal M, Rosenblatt R, Tolf A, Selling K, Sherif A, Winqvist O (2011) FOXP3 and survival in urinary bladder cancer. BJU Int 108:1672–1678

    Article  CAS  PubMed  Google Scholar 

  58. Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, Bajorin DF, Reuter VE, Herr H, Old LJ, Sato E (2007) CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci U S A 104:3967–3972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Krpina K, Babarovic E, Dordevic G, Fuckar Z, Jonjic N (2012) The association between the recurrence of solitary non-muscle invasive bladder cancer and tumor infiltrating lymphocytes. Croat Med J 53:598–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Chi LJ, Lu HT, LiGL WXM, Su Y, Xu WH, Shen BZ (2010) Involvement of T helper type 17 and regulatory T cell activity in tumour immunology of bladder carcinoma. Clin Exp Immunol 161:480–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Lee SJ, Park SS, Lee US, Kim WJ, Moon SK (2008) Signaling pathway for TNF-alpha-induced MMP-9 expression: mediation through p38 MAP kinase, and inhibition by anti-cancer molecule magnolol in human urinary bladder cancer 5637 cells. Int Immunopharmacol 8:1821–1826

    Article  CAS  PubMed  Google Scholar 

  62. Feng CC, Wang PH, Ding Q, Guan M, Zhang YF, Jiang HW, Wen H, Wu Z (2013) Expression of pigment epithelium-derived factor and tumor necrosis factor-alpha is correlated in bladder tumor and is related to tumor angiogenesis. Urol Oncol 31:241–246

    Article  PubMed  CAS  Google Scholar 

  63. Tsui KH, Wang SW, Chung LC, Feng TH, Lee TY, Chang PL, Juang HH (2013) Mechanisms by which interleukin-6 attenuates cell invasion and tumorigenesis in human bladder carcinoma cells. Biomed Res Int 2013:791212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Chen MF, Lin PY, Wu CF, Chen WC, Wu CT (2013) IL-6 expression regulates tumorigenicity and correlates with prognosis in bladder cancer. PLoS One 8:e61901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Trichopoulos D, Psaltopoulou T, Orfanos P, Trichopoulou A, Boffetta P (2006) Plasma C-reactive protein and risk of cancer: a prospective study from Greece. Cancer Epidemiol Biomark Prev 15:381–384

    Article  CAS  Google Scholar 

  66. Gakis G, Todenhöfer T, Renninger M, Schilling D, Sievert KD, Schwentner C, Stenzl A (2011) Development of a new outcome prediction model in carcinoma invading the bladder based on preoperative serum C-reactive protein and standard pathological risk factors: the TNR-C score. BJU Int 108:1800–1805

    Article  CAS  PubMed  Google Scholar 

  67. Wu CC1, Huang YK, Chung CJ, Huang CY, Pu YS, Shiue HS, Lai LA, Lin YC, Su CT, Hsueh YM (2013) Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl Pharmacol 272:30–36

    Article  CAS  PubMed  Google Scholar 

  68. Pignot G, Bieche I, Vacher S, Güet C, Vieillefond A, Debré B, Lidereau R, Amsellem-Ouazana D (2009) Large-scale real-time reverse transcription-PCR approach of angiogenic pathways in human transitional cell carcinoma of the bladder: identification of VEGFA as a major independent prognostic marker. Eur Urol 56:678–688

    Article  CAS  PubMed  Google Scholar 

  69. Sheryka E1, Wheeler MA, Hausladen DA, Weiss RM (2003) Urinary interleukin-8 levels are elevated in subjects with transitional cell carcinoma. Urology 62:162–166

    Article  PubMed  Google Scholar 

  70. Inoue K, Slaton JW, Kim SJ, Perrotte P, Eve BY, Bar-Eli M, Radinsky R, Dinney CP (2000) Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res 60:2290–2299

    CAS  PubMed  Google Scholar 

  71. Reis ST, Leite KR, Piovesan LF, Pontes-Junior J, Viana NI, Abe DK, Crippa A, Moura CM, Adonias SP, Srougi M, Dall’Oglio MF (2012) Increased expression of MMP-9 and IL-8 are correlated with poor prognosis of bladder cancer. BMC Urol 12:18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Bukan N, Sözen S, Coskun U, Sancak B, Günel N, Bozkirli I, Senocak C (2003) Serum interleukin-18 and nitric oxide activity in bladder carcinoma. Eur Cytokine Netw 14:163–167

    CAS  PubMed  Google Scholar 

  73. Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16:133–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Miyake M1, Lawton A, Goodison S, Urquidi V, Gomes-Giacoia E, Zhang G, Ross S, Kim J, Rosser CJ (2013) Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers. BMC Cancer 13:322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Kaifi JT, Yekebas EF, Schurr P, Obonyo D, Wachowiak R, Busch P, Heinecke A, Pantel K, Izbicki JR (2005) Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 97:1840–1847

    Article  CAS  PubMed  Google Scholar 

  76. Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C, Foshag L, Bilchik AJ, Hoon DS (2005) Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 23:2744–2753

    Article  CAS  PubMed  Google Scholar 

  77. Salvucci O, Bouchard A, Baccarelli A, Deschênes J, Sauter G, Simon R, Bianchi R, Basik M (2006) The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat 97:275–283

    Article  CAS  PubMed  Google Scholar 

  78. Nishizawa K, Nishiyama H, Oishi S, Tanahara N, Kotani H, Mikami Y, Toda Y, Evans BJ, Peiper SC, Saito R, Watanabe J, Fujii N, Ogawa O (2010) Fluorescent imaging of high-grade bladder cancer using a specific antagonist for chemokine receptor CXCR4. Int J Cancer 127:1180–1187

    Article  CAS  PubMed  Google Scholar 

  79. Batsi O, Giannopoulou I, Nesseris I, Valavanis C, Gakiopoulou H, Patsouris ES, Arapandoni-Dadioti P, Lazaris AC (2014) Immunohistochemical evaluation of CXCL12-CXCR4 axis and VEGFR3 expression in primary urothelial cancer and its recurrence. Anticancer Res 34:3537–3542

    PubMed  Google Scholar 

  80. Hao M1, Zheng J, Hou K, Wang J, Chen X, Lu X, Bo J, Xu C, Shen K, Wang J (2012) Role of chemokine receptor CXCR7 in bladder cancer progression. Biochem Pharmacol 84:204–214

    Article  CAS  PubMed  Google Scholar 

  81. Margulis V, Shariat SF, Ashfaq R, Thompson M, Sagalowsky AI, Hsieh JT, Lotan Y (2007) Expression of cyclooxygenase-2 in normal urothelium, and superficial and advanced transitional cell carcinoma of bladder. J Urol 177:1163–1168

    Article  CAS  PubMed  Google Scholar 

  82. Tadin T, Krpina K, Stifter S, Babarović E, Fučkar Z, Jonjić N (2012) Lower cyclooxygenase-2 expression is associated with recurrence of solitary non-muscle invasive bladder carcinoma. Diagn Pathol 7:152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. van der Horst G, Bos L, van der Pluijm G (2012) Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Mol Cancer Res 10:995–1009

    Article  PubMed  CAS  Google Scholar 

  84. Thanan R, Murata M, Ma N, Hammam O, Wishahi M, El Leithy T, Hiraku Y, Oikawa S, Kawanishi S (2012) Nuclear localization of COX-2 in relation to the expression of stemness markers in urinary bladder cancer. Mediat Inflamm 2012:165,879

    Article  CAS  Google Scholar 

  85. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386

    Article  CAS  PubMed  Google Scholar 

  86. Tomlinson DC, Baxter EW, Loadman PM, Hull MA, Knowles MA (2012) FGFR1-induced epithelial to mesenchymal transition through MAPK/PLCγ/COX-2-mediated mechanisms. PLoS One 7:e38972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Shi Y, Cui L, Dai G, Chen J, Pan H, Song L, Cheng S, Wang X (2006) Elevated prostaglandin E2 level via cPLA2–COX-2–mPGES-1 pathway involved in bladder carcinogenesis induced by terephthalic acid-calculi in Wistar rats. Prostaglandins Leukot Essent Fat Acids 74:309–315

    Article  CAS  Google Scholar 

  88. Wheeler MA, Hausladen DA, Yoon JH, Weiss RM (2002) Prostaglandin E2 production and cyclooxygenase-2 induction in human urinary tract infections and bladder cancer. J Urol 168:1568–1573

    Article  CAS  PubMed  Google Scholar 

  89. von der Emde L, Goltz D, Latz S, Müller SC, Kristiansen G, Ellinger J, Syring I (2014) Prostaglandin receptors EP1-4 as a potential marker for clinical outcome in urothelial bladder cancer. Am J Cancer Res 4:952–962

    PubMed Central  PubMed  Google Scholar 

  90. Ehsan A, Sommer F, Schmidt A, Klotz T, Koslowski J, Niggemann S, Jacobs G, Engelmann U, Addicks K, Bloch W (2002) Nitric oxide pathways in human bladder carcinoma. The distribution of nitric oxide synthases, soluble guanylyl cyclase, cyclic guanosine monophosphate, and nitrotyrosine. Cancer 95:2293–2301

    Article  CAS  PubMed  Google Scholar 

  91. Gecit I, Aslan M, Gunes M, Pirincci N, Esen R, Demir H, Ceylan K (2012) Serum prolidase activity, oxidative stress, and nitric oxide levels in patients with bladder cancer. J Cancer Res Clin Oncol 138:739–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Amasyali AS1, Kucukgergin C, Erdem S, Sanli O, Seckin S, Nane I (2012) Nitric oxide synthase (eNOS4a/b) gene polymorphism is associated with tumor recurrence and progression in superficial bladder cancer cases. J Urol 188:2398–2403

    Article  CAS  PubMed  Google Scholar 

  93. Romih R, Korosec P, Sedmak B, Jezernik K (2008) Mitochondrial localization of nitric oxide synthase in partially differentiated urothelial cells of urinary bladder lesions. Appl Immunohistochem Mol Morphol 16:239–245

    Article  CAS  PubMed  Google Scholar 

  94. Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12:715–723

    Article  CAS  PubMed  Google Scholar 

  95. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Vendramini-Costa DB, Carvalho JE (2012) Molecular link mechanisms between inflammation and cancer. Curr Pharm Des 18:3831–3852

    Article  CAS  PubMed  Google Scholar 

  97. Oeckinghaus A, Hayden MS, Sankar Ghosh S (2011) Crosstalk in NF-kB signaling pathways. Nat Immunol 12:695–708

    Article  CAS  PubMed  Google Scholar 

  98. Levidou G, Saetta AA, Korkolopoulou P, Papanastasiou P, Gioti K, Pavlopoulos P, Diamantopoulou K, Thomas-Tsagli E, Xiromeritis K, Patsouris E (2008) Clinical significance of nuclear factor (NF)-kappaB levels in urothelial carcinoma of the urinary bladder. Virchows Arch 452:295–304

    Article  CAS  PubMed  Google Scholar 

  99. Kontos S1, Kominea A, Melachrinou M, Balampani E, Sotiropoulou-Bonikou G (2010) Inverse expression of estrogen receptor-beta and nuclear factor-kappaB in urinary bladder carcinogenesis. Int J Urol 17:801–809

    Article  PubMed  Google Scholar 

  100. Duan W, Wang E, Zhang F, Wang T, You X, Qiao B (2014) Association between the NFKB1-94ins/del ATTG polymorphism and cancer risk: an updated meta-analysis. Cancer Investig 32:311–320

    Article  CAS  Google Scholar 

  101. Riemann K, Becker L, Struwe H, Rübben H, Eisenhardt A, Siffert W (2007) Insertion/deletion polymorphism in the promoter of NFKB1 as a potential molecular marker for the risk of recurrence in superficial bladder cancer. Int J Clin Pharmacol Ther 45:423–430

    Article  CAS  PubMed  Google Scholar 

  102. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 206:1457–1464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Qi QR, Yang ZM (2014) Regulation and function of signal transducer and activator of transcription 3. World J Biol Chem 5:231–239

    PubMed Central  PubMed  Google Scholar 

  104. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009) Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15:283–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Zhang B, Lu Z, Hou Y, Hu J, Wang C (2014) The effects of STAT3 and Survivin silencing on the growth of human bladder carcinoma cells. Tumour Biol 35:5401–5407

    Article  CAS  PubMed  Google Scholar 

  106. Degoricija M1, Situm M, Korać J, Miljković A, Matić K, Paradžik M, Marinović Terzić I, Jerončić A, Tomić S, Terzić J (2014) High NF-κB and STAT3 activity in human urothelial carcinoma: a pilot study. World J Urol 32:1469–1475

    Article  CAS  PubMed  Google Scholar 

  107. Ho PL, Lay EJ, Jian W, Parra D, Chan KS (2012) Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res 72:3135–3142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Morales A, Eidinger D, Bruce AW (1976) Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 116:180–183

    CAS  PubMed  Google Scholar 

  109. Kresowik TP, Griffith TS (2009) Bacillus Calmette-Guerin immunotherapy for urothelial carcinoma of the bladder. Immunotherapy 1:281–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer-a current perspective. Nat Rev Urol 11:153–162

    Article  CAS  PubMed  Google Scholar 

  111. Shah G, Zhang G, Chen F, Cao Y, Kalyanaraman B, See W (2014) Loss of bacillus Calmette-Guérin viability adversely affects the direct response of urothelial carcinoma cells to bacillus Calmette-Guérin exposure. J Urol 191:823–829

    Article  CAS  PubMed  Google Scholar 

  112. Zuiverloon TC, Nieuweboer AJ, Vékony H, Kirkels WJ, Bangma CH, Zwarthoff EC (2012) Markers predicting response to bacillus Calmette-Guérin immunotherapy in high-risk bladder cancer patients: a systematic review. Eur Urol 61:128–145

    Article  PubMed  Google Scholar 

  113. Cai T, Nesi G, Mazzoli S, Meacci F, Tinacci G, Luciani LG, Ficarra V, Malossini G, Bartoletti R (2012) Prediction of response to bacillus Calmette-Guérin treatment in non-muscle invasive bladder cancer patients through interleukin-6 and interleukin-10 ratio. Exp Ther Med 4:459–464

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Massari F, Ciccarese C, Santoni M, Brunelli M, Conti A, Modena A, Montironi R, Santini D, Cheng L, Martignoni G, Cascinu S, Tortora G (2015) The route to personalized medicine in bladder cancer: where do we stand? Target Oncol. doi:10.1007/s11523-015-0357-x

  115. Dhawan D, Craig BA, Cheng L, Snyder PW, Mohammed SI, Stewart JC, Zheng R, Loman RA, Foster RS, Knapp DW (2010) Effects of short-term celecoxib treatment in patients with invasive transitional cell carcinoma of the urinary bladder. Mol Cancer Ther 9:1371–1377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Sabichi AL, Lee JJ, Grossman HB, Liu S, Richmond E, Czerniak BA, De la Cerda J, Eagle C, Viner JL, Palmer JL, Lerner SP (2011) A randomized controlled trial of celecoxib to prevent recurrence of nonmuscle-invasive bladder cancer. Cancer Prev Res 4:1580–1589

    Article  CAS  Google Scholar 

  117. A Study of Intravesical Bacillus Calmette-Guerin (BCG) in Combination With ALT-803 in Patients With BCG-naive Non-Muscle Invasive Bladder Cancer. Clinical Trials.gov Identifier: NCT02138734. Available from: https://clinicaltrials.gov/ct2/show/NCT02138734

  118. Sonpavde G, Rosser CJ, Pan C-X, Parikh RA, Nix J, Gingrich JR, Hernandez L, Huang B-Y, Wong HC (2015) Phase I trial of ALT-801, a first-in-class T-cell receptor (TCR)-interleukin (IL)-2 fusion molecule, plus gemcitabine (G) for Bacillus Calmette Guerin (BCG)-resistant non-muscle-invasive bladder cancer (NMIBC). J Clin Oncol 33:e15509

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Nesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesi, G., Nobili, S., Cai, T. et al. Chronic inflammation in urothelial bladder cancer. Virchows Arch 467, 623–633 (2015). https://doi.org/10.1007/s00428-015-1820-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1820-x

Keywords

Navigation