Skip to main content
Log in

Mobilizing cognition for speeded action: try-harder instructions promote motivated readiness in the constant-foreperiod paradigm

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We examined the effect of motivational readiness on cognitive performance. An important but still not sufficiently elaborated question is whether individuals can voluntarily increase cognitive efficiency for an impending target event, given sufficient preparation time. Within the framework of the constant-foreperiod design (comparing reaction time performance in blocks of short and long foreperiod intervals, FPs), we examined the effect of an instruction to try harder (instructional cue: standard vs. effort) in a choice-reaction task on performance speed and variability. Proceeding from previous theoretical considerations, we expected the instruction to speed-up processing irrespective of FP length, while error rate should be increased in the short-FP but decreased in the long-FP condition. Overall, the results confirmed this prediction. Importantly, the distributional (ex-Gaussian and delta plot) analysis revealed that the instruction to try harder decreased distributional skewness (i.e., longer percentiles were more affected), indicating that mobilization ensured temporal performance stability (persistence).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. One reviewer had some questions regarding error rate in short-FP blocks. It may sometimes be of theoretical importance to show that an effect on RT occurs robustly, irrespective of (even small) differences in error rate across individuals (Jentzsch & Dudschig, 2009; Notebaert et al., 2009; Steinborn, Flehmig, Bratzke, & Schroeter, 2012). However, this should explicitly be demonstrated. To this end, we divided the sample into three parts according to the individual overall error rate and selected one-third (the most accurate) of the sample for further analysis. In fact, similar results were obtained both visually and statistically. Responses were faster in blocks with the short-FP than with long-FP duration, as indicated by a main effect of FP length on RTM [F(1,10) = 34.8, p < 0.001]. Responses were also faster in effort trials than in standard trials, as indicated by the main effect of CUE on RTM [F(1,10) = 38.0, p < 0.001]. No FP × CUE interaction on RTM occurred (F < 1.7).

  2. One reviewer asked whether the exercising of effort and the resulting benefit in a current trial yielded costs in the subsequent trial. This issue is certainly important particularly with respect to recent findings and theorizing in the domain of vigilance-detection performance (Helton & Russell, 2011; Matthews et al., 2002; Thomson, Besner, & Smilek, 2015; Warm, Parasuraman, Matthews, 2008). In response to this request, we performed an extensional GLM analysis, comparing RT performance in standard–standard versus effort–standard sequences. The result of this extensional analysis is that individuals become slightly faster (not slower) after the effort trial as compared to after a standard trial (p > 0.05). There was no interaction with foreperiod length (F < 1). This indicates that attentional control settings are affected by short-term effort mobilization, although the precise mechanism underlying this aftereffect cannot be determined here. We therefore will not further expand on this issue at this point. Notably, our results are consistent with a recent finding of Ralph, Onderwater, Thomson & Smilek (2016), who observed that vigilance-detection performance immediately improved after the arousing experience of exercising a car game.

References

  • Adams, J. A. (1954). Psychomotor performance as a function of intertrial rest interval. Journal of Experimental Psychology, 48(2), 131–133. doi:10.1037/h0059196.

    Article  PubMed  Google Scholar 

  • Alegria, J. (1974). Time course of preparation after a first peak—Some constraints of reacting mechanisms. Quarterly Journal of Experimental Psychology, 26(4), 622–632. doi:10.1080/14640747408400455.

    Article  Google Scholar 

  • Bertelson, P., & Barzeele, J. (1965). Interaction of time uncertainty and relative signal frequency in determining choice reaction time. Journal of Experimental Psychology, 70(5), 448–451. doi:10.1037/h0022534.

    Article  PubMed  Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. doi:10.1016/j.actpsy.2008.09.005.

    Article  PubMed  Google Scholar 

  • Botvinick, M. M., & Braver, T. S. (2015). Motivation and cognitive control: from behavior to neural mechanism. Annual Review of Psychology, 66, 83–113. doi:10.1146/annurev-psych-010814-015044.

    Article  PubMed  Google Scholar 

  • Bratzke, D., Rolke, B., Steinborn, M. B., & Ulrich, R. (2009). The effect of 40 h constant wakefulness on task-switching efficiency. Journal of Sleep Research, 18(2), 167–172. doi:10.1111/j.1365-2869.2008.00729.x.

    Article  PubMed  Google Scholar 

  • Bratzke, D., Steinborn, M. B., Rolke, B., & Ulrich, R. (2012). Effects of sleep loss and circadian rhythm on executive inhibitory control in the Stroop and Simon tasks. Chronobiology International, 29(1), 55–61. doi:10.3109/07420528.2011.635235.

    Article  PubMed  Google Scholar 

  • Brewer, N., & Smith, G. A. (1984). How normal and retarded individuals monitor and regulate speed and accuracy of responding in serial choice tasks. Journal of Experimental Psychology: General, 113(1), 71–93. doi:10.1037/0096-3445.113.1.71.

    Article  Google Scholar 

  • Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307(5712), 1118–1121. doi:10.1126/science.1105783.

    Article  PubMed  Google Scholar 

  • Capizzi, M., Sanabria, D., & Correa, A. (2012). Dissociating controlled from automatic processing in temporal preparation. Cognition, 123(2), 293–302. doi:10.1016/j.cognition.2012.02.005.

    Article  PubMed  Google Scholar 

  • Colzato, L. S., van den Wildenberg, W. P. M., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological Research, 77(2), 234–239. doi:10.1007/s00426-012-0415-2.

    Article  PubMed  Google Scholar 

  • Correa, A., Lupianez, J., Milliken, B., & Tudela, P. (2004). Endogenous temporal orienting of attention in detection and discrimination tasks. Perception and Psychophysics, 66(2), 264–278. doi:10.3758/bf03194878.

    Article  PubMed  Google Scholar 

  • Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18(18), 7426–7435.

    PubMed  Google Scholar 

  • Craik, F. I. M. (1948). Theory of the human operator in control systems: Man as element in the control system. British Journal of Psychology, 39(2), 142–148. doi:10.1111/j.2044-8295.1948.tb01149.x.

    Google Scholar 

  • De Jong, R., Liang, C. C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 731–750. doi:10.1037/0096-1523.20.4.731.

    PubMed  Google Scholar 

  • Drazin, D. H. (1961). Effects of foreperiod, foreperiod variability, and probability of stimulus occurrence on simple reaction-time. Journal of Experimental Psychology, 62(1), 43–1000. doi:10.1037/h0046860.

    Article  PubMed  Google Scholar 

  • Dreisbach, G., & Fischer, R. (2011). If it’s hard to read… try harder! Processing fluency as signal for effort adjustments. Psychological Research, 75(5), 376–383. doi:10.1007/s00426-010-0319-y.

    Article  PubMed  Google Scholar 

  • Düker, H. (1929). Psychologische Untersuchung über die Arbeit am laufenden Band (Exploring performance stability in continuous mental work). Industrielle Psychotechnik, 6, 214–224.

  • Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organisation of behavior. Psychological Review, 66(3), 183–201. doi:10.1037/h0047707.

    Article  PubMed  Google Scholar 

  • Falkenstein, M., Hoormann, J., Hohnsbein, J., & Kleinsorge, T. (2003). Short-term mobilization of processing resources is revealed in the event-related potential. Psychophysiology, 40(6), 914–923. doi:10.1111/1469-8986.00109.

    Article  PubMed  Google Scholar 

  • Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9(2), 288–307. doi:10.1006/ccog.2000.0447.

    Article  PubMed  Google Scholar 

  • Fischer, R., Plessow, F., & Kiesel, A. (2010). Auditory warning signals affect mechanisms of response selection: Evidence from a Simon Task. Experimental Psychology, 57(2), 89–97. doi:10.1027/1618-3169/a000012.

    Article  PubMed  Google Scholar 

  • Fischer, R., Plessow, F., & Kiesel, A. (2012). The effects of alerting signals in action control: activation of S-R associations or inhibition of executive control processes? Psychological Research, 76(3), 317–328. doi:10.1007/s00426-011-0350-7.

    Article  PubMed  Google Scholar 

  • Flehmig, H. C., Steinborn, M. B., Langner, R., Scholz, A., & Westhoff, K. (2007). Assessing intraindividual variability in sustained attention: Reliability, relation to speed and accuracy, and practice effects. Psychology Science, 49, 132–149.

    Google Scholar 

  • Flehmig, H. C., Steinborn, M. B., Westhoff, K., & Langner, R. (2010). Neuroticism and speed-accuracy tradeoff in self-paced speeded mental addition and comparison. Journal of Individual Differences, 31(3), 130–137. doi:10.1027/1614-0001/a000021.

    Article  Google Scholar 

  • Folkard, S., & Greeman, A. L. (1974). Salience, induced muscle tension, and ability to ignore irrelevant information. Quarterly Journal of Experimental Psychology, 26(3), 360–367. doi:10.1080/14640747408400425.

    Article  PubMed  Google Scholar 

  • Frings, C., Rothermund, K., & Wentura, D. (2007). Distractor repetitions retrieve previous responses to targets. Quarterly Journal of Experimental Psychology, 60(10), 1367–1377. doi:10.1080/17470210600955645.

    Article  Google Scholar 

  • Grosjean, M., Rosenbaum, D. A., & Elsinger, C. (2001). Timing and reaction time. Journal of Experimental Psychology-General, 130(2), 256–272. doi:10.1037//0096-3445.130.2.256.

    Article  PubMed  Google Scholar 

  • Hancock, P. A., & Warm, J. S. (1989). A dynamic model of stress and sustained attention. Human Factors, 31(5), 519–537. doi:10.1177/001872088903100503.

    Article  PubMed  Google Scholar 

  • Heathcote, A., Popiel, S. J., & Mewhort, D. J. K. (1991). Analysis of response time distributions—An example using the Stroop task. Psychological Bulletin, 109(2), 340–347. doi:10.1037/0033-2909.109.2.340.

    Article  Google Scholar 

  • Helton, W. S., & Russell, P. N. (2011). Feature absence-presence and two theories of lapses of sustained attention. Psychological Research, 75(5), 384–392. doi:10.1007/s00426-010-0316-1.

    Article  PubMed  Google Scholar 

  • Helton, W. S., & Russell, P. N. (2015). Rest is best: The role of rest and task interruptions on vigilance. Cognition, 134, 165–173. doi:10.1016/j.cognition.2014.10.001.

    Article  PubMed  Google Scholar 

  • Hillgruber, A. (1912). Fortlaufende Arbeit und Willensbetätigung (Exercising of willpower during continuous mental work). Untersuchungen zur Psychologie und Philosophie, 1–51.

  • Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biological Psychology, 45(1–3), 73–93. doi:10.1016/S0301-0511(96)05223-4.

    Article  PubMed  Google Scholar 

  • Hohle, R. H. (1965). Inferred components of reaction-times as functions of foreperiod duration. Journal of Experimental Psychology, 69(4), 382–386. doi:10.1037/h0021740.

    Article  PubMed  Google Scholar 

  • Holender, D., & Bertelson, P. (1975). Selective preparation and time uncertainty. Acta Psychologica, 39(3), 193–203. doi:10.1016/0001-6918(75)90034-7.

    Article  PubMed  Google Scholar 

  • Hommel, B. (1998a). Automatic stimulus-response translation in dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 1368–1384. doi:10.1037/0096-1523.24.5.1368.

    PubMed  Google Scholar 

  • Hommel, B. (1998b). Event files: Evidence for automatic integration of stimulus-response episodes. Visual Cognition, 5(1–2), 183–216. doi:10.1080/713756773.

    Article  Google Scholar 

  • Hommel, B., Fischer, R., Colzato, L. S., van den Wildenberg, W. P. M., & Cellini, C. (2012). The effect of fMRI (noise) on cognitive control. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 290–301. doi:10.1037/a0026353.

    PubMed  Google Scholar 

  • Huestegge, L., & Koch, I. (2009). Dual-task crosstalk between saccades and manual responses. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 352–362. doi:10.1037/a0013897.

    PubMed  Google Scholar 

  • Huestegge, L., & Koch, I. (2013). Constraints in task-set control: Modality dominance patterns among effector systems. Journal of Experimental Psychology: General, 142(3), 633–637. doi:10.1037/a0030156.

    Article  Google Scholar 

  • Humphreys, M. S., & Revelle, W. (1984). Personality, motivation, and performance—A theory of the relationship between individual-differences and information-processing. Psychological Review, 91(2), 153–184. doi:10.1037/0033-295x.91.2.153.

    Article  PubMed  Google Scholar 

  • Inzlicht, M., & Gutsell, J. N. (2007). Running on empty—Neural signals for self-control failure. Psychological Science, 18(11), 933–937. doi:10.1111/j.1467-9280.2007.02004.x.

    Article  PubMed  Google Scholar 

  • Inzlicht, M., & Schmeichel, B. J. (2012). What is ego depletion? Toward a mechanistic revision of the resource model of self-control. Perspectives on Psychological Science, 7(5), 450–463. doi:10.1177/1745691612454134.

    Article  PubMed  Google Scholar 

  • Jennings, J. R., & van der Molen, M. W. (2002). Cardiac timing and the central regulation of action. Psychological Research, 66(4), 337–349. doi:10.1007/s00426-002-0106-5.

    Article  PubMed  Google Scholar 

  • Jennings, J. R., & van der Molen, M. W. (2005). Preparation for speeded action as a psychophysiological concept. Psychological Bulletin, 131(3), 434–459. doi:10.1037/0033-2909.131.3.434.

    Article  PubMed  Google Scholar 

  • Jentzsch, I., & Dudschig, C. (2009). Why do we slow down after an error? Mechanisms underlying the effects of posterior slowing. Quarterly Journal of Experimental Psychology, 62(2), 209–218. doi:10.1080/17470210802240655.

    Article  Google Scholar 

  • Jentzsch, I., & Leuthold, H. (2006). Control over speeded actions: A common processing locus for micro- and macro-trade-offs? Quarterly Journal of Experimental Psychology, 59(8), 1329–1337. doi:10.1080/17470210600674394.

    Article  Google Scholar 

  • Jolicoeur, P. (1998). Modulation of the attentional blink by on-line response selection: Evidence from speeded and unspeeded task(1) decisions. Memory & Cognition, 26(5), 1014–1032. doi:10.3758/bf03201180.

    Article  Google Scholar 

  • Jolicoeur, P. (1999). Concurrent response-selection demands modulate the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 1097–1113. doi:10.1037/0096-1523.25.4.1097.

    Google Scholar 

  • Kahneman, D. (1973). Attention and Effort. London: Prentice Hall.

    Google Scholar 

  • Kahneman, D. (2013). Thinking fast and slow. London: Penguin.

    Google Scholar 

  • Karlin, L. (1959). Reaction-time as a function of foreperiod duration and variability. Journal of Experimental Psychology, 58(2), 185–191. doi:10.1037/h0049152.

    Article  PubMed  Google Scholar 

  • Kerr, B. (1973). Processing demands during mental operations. Memory & Cognition, 1(4), 401–412. doi:10.3758/bf03208899.

    Article  Google Scholar 

  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874. doi:10.1037/a0019842.

    Article  PubMed  Google Scholar 

  • Killeen, P. R., Hanson, S. J., & Osborne, S. R. (1978). Arousal—Its genesis and manifestation as response rate. Psychological Review, 85(6), 571–581. doi:10.1037//0033-295x.85.6.571.

    Article  PubMed  Google Scholar 

  • Klein, R., & Kerr, B. (1974). Visual signal-detection and locus of foreperiod effects. Memory & Cognition, 2(3), 431–435. doi:10.3758/bf03196900.

    Article  Google Scholar 

  • Kleinsorge, T. (2001). The time course of effort mobilization and strategic adjustments of response criteria. Psychological Research, 65(3), 216–223. doi:10.1007/s004260100062.

    Article  PubMed  Google Scholar 

  • Klemmer, E. T. (1956). Time uncertainty in simple reaction time. Journal of Experimental Psychology, 51(3), 179–184. doi:10.1037/h0042317.

    Article  PubMed  Google Scholar 

  • Klemmer, E. T. (1957). Simple reaction-time as a function of time uncertainty. Journal of Experimental Psychology, 54(3), 195–200. doi:10.1037/h0046227.

    Article  PubMed  Google Scholar 

  • Koch, I. (2001). Automatic and intentional activation of task sets. Journal of Experimental Psychology: Human Perception and Performance, 27(6), 1474–1486. doi:10.1037/0278-7393.27.6.1474.

    Google Scholar 

  • Kornblum, S. (1973). Simple reaction-time as a race between signal-detection and time estimation: Paradigm and model. Perception and Psychophysics, 13(1), 108–112. doi:10.3758/bf03207243.

    Article  Google Scholar 

  • Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661–679.

    Article  PubMed  Google Scholar 

  • Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials in Quantitative Methods for Psychology, 4(1), 35–45.

    Article  Google Scholar 

  • Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139(4), 870–900. doi:10.1037/a0030694.

    Article  PubMed  Google Scholar 

  • Langner, R., Eickhoff, S. B., & Steinborn, M. B. (2011). Mental fatigue modulates dynamic adaptation to perceptual demand in speeded detection. PLoS One,. doi:10.1371/journal.pone.0028399.

    Google Scholar 

  • Langner, R., Steinborn, M. B., Chatterjee, A., Sturm, W., & Willmes, K. (2010). Mental fatigue and temporal preparation in simple reaction-time performance. Acta Psychologica, 133(1), 64–72. doi:10.1016/j.actpsy.2009.10.001.

    Article  PubMed  Google Scholar 

  • Leth-Steensen, C. (2009). Lengthening fixed preparatory foreperiod durations within a digit magnitude classification task serves mainly to shift distributions of response times upwards. Acta Psychologica, 130(1), 72–80. doi:10.1016/j.actpsy.2008.10.003.

    Article  PubMed  Google Scholar 

  • Lim, J., Teng, J., Wong, K. F., & Chee, M. W. L. (2016). Modulating rest-break length induces differential recruitment of automatic and controlled attentional processes upon task reengagement. Neuroimage, 134, 64–73. doi:10.1016/j.neuroimage.2016.03.077.

    Article  PubMed  Google Scholar 

  • Los, S. A., & Heslenfeld, D. J. (2005). Intentional and unintentional contributions to nonspecific preparation: Electrophysiological evidence. Journal of Experimental Psychology: General, 134(1), 52–72. doi:10.1037/0096-3445.134.1.52.

    Article  Google Scholar 

  • Los, S. A., Hoorn, J. F., Grin, M., & Van der Burg, E. (2013). The time course of temporal preparation in an applied setting: A study of gaming behavior. Acta Psychologica, 144(3), 499–505. doi:10.1016/j.actpsy.2013.09.003.

    Article  PubMed  Google Scholar 

  • Los, S. A., & Van den Heuvel, C. E. (2001). Intentional and unintentional contributions to nonspecific preparation during reaction time foreperiods. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 370–386. doi:10.1037//0096-1523.27.2.370.

    PubMed  Google Scholar 

  • Lupker, S. J., Brown, P., & Colombo, L. (1997). Strategic control in a naming task: Changing routes or changing deadlines? Journal of Experimental Psychology. Learning, Memory, and Cognition, 23(3), 570–590. doi:10.1037//0278-7393.23.3.570.

    Article  Google Scholar 

  • Luria, R., & Meiran, N. (2005). Increased control demand results in serial processing—Evidence from dual-task performance. Psychological Science, 16(10), 833–840. doi:10.1111/j.1467-9280.2005.01622.x.

    Article  PubMed  Google Scholar 

  • Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104(2), 241–265. doi:10.1037/0033-295x.104.2.241.

    Article  PubMed  Google Scholar 

  • Matthews, G., Campbell, S. E., Falconer, S., Joyner, L. A., Huggins, J., Gilliland, K., & Warm, J. S. (2002). Fundamental dimensions of subjective state in performance settings: Task engagement, distress, and worry. Emotion, 2(4), 315–340. doi:10.1037//1528-3542.2.4.315.

    Article  PubMed  Google Scholar 

  • Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology. Learning, Memory, and Cognition, 22(6), 1423–1442. doi:10.1037//0278-7393.22.6.1423.

    Article  Google Scholar 

  • Meiran, N., & Chorev, Z. (2005). Phasic alertness and the residual task-switching cost. Experimental Psychology, 52(2), 109–124. doi:10.1027/1618-3169.52.2.109.

    Article  PubMed  Google Scholar 

  • Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41(3), 211–253. doi:10.1006/cogp.2000.0736.

    Article  PubMed  Google Scholar 

  • Metcalfe, J., & Mischel, W. (1999). A hot/cool-system analysis of delay of gratification: Dynamics of willpower. Psychological Review, 106(1), 3–19. doi:10.1037//0033-295x.106.1.3.

    Article  PubMed  Google Scholar 

  • Miles, J. D., & Proctor, R. W. (2012). Correlations between spatial compatibility effects: are arrows more like locations or words? Psychological Research, 76(6), 777–791. doi:10.1007/s00426-011-0378-8.

    Article  PubMed  Google Scholar 

  • Miller, J. (2006). A likelihood ratio test for mixture effects. Behavior Research Methods, 38(1), 92–106. doi:10.3758/bf03192754.

    Article  PubMed  Google Scholar 

  • Miller, J., & Durst, M. (2014). “Just do it when you get a chance”: The effects of a background task on primary task performance. Attention, Perception, & Psychophysics, 76(8), 2560–2574. doi:10.3758/s13414-014-0730-3.

    Article  Google Scholar 

  • Miller, J., & Durst, M. (2015). A comparison of the psychological refractory period and prioritized processing paradigms: Can the response-selection bottleneck model explain them both? Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1420–1441. doi:10.1037/xhp0000103.

    PubMed  Google Scholar 

  • Miller, J., & Ulrich, R. (2013). Mental chronometry and individual differences: Modeling reliabilities and correlations of reaction time means and effect sizes. Psychonomic Bulletin & Review, 20(5), 819–858. doi:10.3758/s13423-013-0404-5.

    Article  Google Scholar 

  • Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychological Bulletin, 126(2), 247–259. doi:10.1037//0033-2909.126.2.247.

    Article  PubMed  Google Scholar 

  • Navon, D., & Miller, J. (1987). Role of outcome conflict in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 435–448. doi:10.1037//0096-1523.13.3.435.

    PubMed  Google Scholar 

  • Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44(3), 193–251. doi:10.1006/cogp.2001.0767.

    Article  PubMed  Google Scholar 

  • Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction-time. Psychological Bulletin, 89(1), 133–162. doi:10.1037//0033-2909.89.1.133.

    Article  Google Scholar 

  • Notebaert, W., Houtman, F., Van Opstal, F., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: An orienting account. Cognition, 111(2), 275–279. doi:10.1016/j.cognition.2009.02.002.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1994). Dual-task interference in simple tasks—Data and theory. Psychological Bulletin, 116(2), 220–244. doi:10.1037/0033-2909.116.2.220.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1998). The psychology of attention: MIT Press.

  • Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics,. doi:10.3389/neuro.11.010.2008.

    PubMed  PubMed Central  Google Scholar 

  • Pieters, J. P. M. (1983). Sternberg additive factor method and underlying psychological processes—Some theoretical considerations. Psychological Bulletin, 93(3), 411–426. doi:10.1037/0033-2909.93.3.411.

    Article  PubMed  Google Scholar 

  • Pieters, J. P. M. (1985). Reaction time analysis of simple mental tasks: A general approach. Acta Psychologica, 59, 227–269. doi:10.1016/0001-6918(85)90046-0.

    Article  Google Scholar 

  • Posner, M. I. (1976). Chronometric Explorations of Mind. Oxford: Oxford University Press.

    Google Scholar 

  • Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78(5), 391–408. doi:10.1037/h0031333.

    Article  Google Scholar 

  • Posner, M. I., Klein, R., Summers, J., & Buggie, S. (1973). Selection of signals. Memory & Cognition, 1(1), 2–12. doi:10.3758/bf03198062.

    Article  Google Scholar 

  • Ralph, B. C. W., Onderwater, K., Thomson, D. R., & Smilek, D. (2016). Disrupting monotony while increasing demand: Benefits of rest and intervening tasks on vigilance. Psychological Research,. doi:10.1007/s00426-016-0752-7.

    PubMed  Google Scholar 

  • Ridderinkhof, K. R. (2002). Micro- and macro-adjustments of task set: activation and suppression in conflict tasks. Psychological Research, 66(4), 312–323. doi:10.1007/s00426-002-0104-7.

    Article  PubMed  Google Scholar 

  • Ruthruff, E., Johnston, J. C., & Remington, R. W. (2009). How strategic is the central bottleneck: can it be overcome by trying harder? Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1368–1384. doi:10.1037/a0015784.

    PubMed  Google Scholar 

  • Schmidt, K. H., Kleinbeck, U., & Brockmann, W. (1984). Motivational control of motor performance by goal setting in a dual-task situation. Psychological Research, 46(1–2), 129–142. doi:10.1007/bf00308598.

    Article  Google Scholar 

  • Schwarz, W., & Miller, J. (2012). Response time models of delta plots with negative-going slopes. Psychonomic Bulletin & Review, 19(4), 555–574. doi:10.3758/s13423-012-0254-6.

    Article  Google Scholar 

  • Smallwood, J. (2013). Distinguishing how from why the mind wanders: A process-occurrence framework for self-generated mental activity. Psychological Bulletin, 139(3), 519–535. doi:10.1037/a0030010.

    Article  PubMed  Google Scholar 

  • Soetens, E., Boer, L. C., & Hueting, J. E. (1985). Expectancy or automatic facilitation? Separating sequential effects in two-choice reaction time. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 598–616. doi:10.1037/0096-1523.11.5.598.

    Google Scholar 

  • Steinborn, M. B., Flehmig, H. C., Bratzke, D., & Schroeter, H. (2012). Error reactivity in self-paced performance: Highly-accurate individuals exhibit largest post-error slowing. Quarterly Journal of Experimental Psychology, 65(4), 624–631. doi:10.1080/17470218.2012.660962.

    Article  Google Scholar 

  • Steinborn, M. B., Flehmig, H. C., Westhoff, K., & Langner, R. (2010a). Differential effects of prolonged work on performance measures in self-paced speed tests. Advances in Cognitive Psychology, 5, 105–113. doi:10.2478/v10053-008-0070-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinborn, M. B., & Huestegge, L. (2016). A walk down the lane gives wings to your brain: Restorative benefits of rest breaks on cognition and self-control. Applied Cognitive Psychology,. doi:10.1002/acp.3255.

    Google Scholar 

  • Steinborn, M. B., & Langner, R. (2011). Distraction by irrelevant sound during foreperiods selectively impairs temporal preparation. Acta Psychologica, 136(3), 405–418. doi:10.1016/j.actpsy.2011.01.008.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., & Langner, R. (2012). Arousal modulates temporal preparation under increased time uncertainty: Evidence from higher-order sequential foreperiod effects. Acta Psychologica, 139(1), 65–76. doi:10.1016/j.actpsy.2011.10.010.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., Langner, R., Flehmig, H. C., & Huestegge, L. (2016). Everyday life cognitive instability predicts simple reaction-time variability: Analysis of reaction time distributions and delta plots. Applied Cognitive Psychology, 30, 92–102. doi:10.1002/acp.3172.

    Article  Google Scholar 

  • Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2008). Sequential effects within a short foreperiod context: Evidence for the conditioning account of temporal preparation. Acta Psychologica, 129(2), 297–307. doi:10.1016/j.actpsy.2008.08.005.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2009). Dynamic adjustment of temporal preparation: Shifting warning signal modality attenuates the sequential foreperiod effect. Acta Psychologica, 132(1), 40–47. doi:10.1016/j.actpsy.2009.06.002.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2010b). The effect of a cross-trial shift of auditory warning signals on the sequential foreperiod effect. Acta Psychologica, 134(1), 94–104. doi:10.1016/j.actpsy.2009.12.011.

    Article  PubMed  Google Scholar 

  • Steinhauser, M., & Huebner, R. (2009). Distinguishing response conflict and task conflict in the Stroop task: Evidence from ex-Gaussian distribution analysis. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1398–1412. doi:10.1037/a0016467.

    PubMed  Google Scholar 

  • Strayer, D. L., & Kramer, A. F. (1994). Strategies and automaticity: II. Dynamic aspects of strategy adjustment. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20(2), 342–365. doi:10.1037/0278-7393.20.2.342.

    Article  Google Scholar 

  • Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14(1), S76–S84. doi:10.1006/nimg.2001.0839.

    Article  PubMed  Google Scholar 

  • Sudevan, P., & Taylor, D. A. (1987). The cuing and priming of cognitive operations. Journal of Experimental Psychology: Human Perception and Performance, 13(1), 89–103. doi:10.1037//0096-1523.13.1.89.

    PubMed  Google Scholar 

  • Szalma, J. L., & Hancock, P. A. (2011). Noise effects on human performance: A meta-analytic synthesis. Psychological Bulletin, 137(4), 682–707. doi:10.1037/a0023987.

    Article  PubMed  Google Scholar 

  • Thomaschke, R., & Dreisbach, G. (2013). Temporal predictability facilitates action, not perception. Psychological Science, 24(7), 1335–1340. doi:10.1177/0956797612469411.

    Article  PubMed  Google Scholar 

  • Thomaschke, R., & Dreisbach, G. (2015). The time-event correlation effect is due to temporal expectancy, not to partial transition costs. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 196–218. doi:10.1037/a0038328.

    PubMed  Google Scholar 

  • Thomaschke, R., Hoffmann, J., Haering, C., & Kiesel, A. (2016). Time-based expectancy for task-relevant stimulus features. Time and Time Perception. doi:10.1007/s00426-016-0810-1.

  • Thomaschke, R., Hopkins, B., & Miall, R. C. (2012). The planning and control model (PCM) of motorvisual priming: Reconciling motorvisual impairment and facilitation effects. Psychological Review, 119(2), 388–407. doi:10.1037/a0027453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomaschke, R., Kunchulia, M., & Dreisbach, G. (2015). Time-based event expectations employ relative, not absolute, representations of time. Psychonomic Bulletin & Review, 22(3), 890–895. doi:10.3758/s13423-014-0710-6.

    Article  Google Scholar 

  • Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on Psychological Science, 10(1), 82–96. doi:10.1177/1745691614556681.

    Article  PubMed  Google Scholar 

  • Thorne, D. R. (2006). Throughput: A simple performance index with desirable characteristics. Behavior Research Methods, 38(4), 569–573. doi:10.3758/bf03193886.

    Article  PubMed  Google Scholar 

  • Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal of Experimental Psychology: General, 123(1), 34–80. doi:10.1037//0096-3445.123.1.34.

    Article  Google Scholar 

  • Ulrich, R., Miller, J., & Schroeter, H. (2007). Testing the race model inequality: An algorithm and computer programs. Behavior Research Methods, 39(2), 291–302. doi:10.3758/bf03193160.

    Article  PubMed  Google Scholar 

  • Ulrich, R., Schroeter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive Psychology, 78, 148–174. doi:10.1016/j.cogpsych.2015.02.005.

    Article  PubMed  Google Scholar 

  • Vallesi, A., Lozano, V. N., & Correa, A. (2013). Dissociating temporal preparation processes as a function of the inter-trial interval duration. Cognition, 127(1), 22–30. doi:10.1016/j.cognition.2012.11.011.

    Article  PubMed  Google Scholar 

  • Van Breukelen, G. J. P., Roskam, E. E. C. I., Eling, P. A. T. M., Jansen, R. W. T. L., Souren, D. A. P. B., & Ickenroth, J. G. M. (1995). A model and diagnostic measures for response-time series on tests of concentration—Historical background, conceptual framework, and some applications. Brain and Cognition, 27(2), 147–179. doi:10.1006/brcg.1995.1015.

    Article  PubMed  Google Scholar 

  • Van der Molen, M. W. (1996). Energetics and the reaction process: Running threads through experimental psychology. In O. Neumann & A. F. Sanders (Eds.), Handbook of Perception and Action III: Attention (pp. 229–272). New York: Academic Press.

    Google Scholar 

  • Van der Molen, M. W., Bashore, T. E., Halliday, R., & Callaway, E. (1991). Chronopsychophysiology: Mental chronometry augmented with psychophysiological time-markers. In J. R. Jennings & M. G. H. Coles (Eds.), Handbook of Cognitive Psychophysiology: Central and Autonomic Nervous System Approaches. Chichester: Wiley.

    Google Scholar 

  • Warm, J. S., & Alluisi, E. A. (1971). Influence of temporal uncertainty and sensory modality of signals on watchkeeping performance. Journal of Experimental Psychology, 87(3), 303–308. doi:10.1037/h0030523.

    Article  Google Scholar 

  • Warm, J. S., Kuwada, S., Clark, J. L., & Kanfer, F. H. (1972). Motivation in vigilance—Effects of self-evaluation and experimenter-controlled feedback. Journal of Experimental Psychology, 92(1), 123–127. doi:10.1037/h0032151.

    Article  PubMed  Google Scholar 

  • Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. Human Factors, 50(3), 433–441. doi:10.1518/001872008x312152.

    Article  PubMed  Google Scholar 

  • Weger, U. W., & Loughnan, S. (2013). Mobilizing unused resources: Using the placebo concept to enhance cognitive performance. Quarterly Journal of Experimental Psychology, 66(1), 23–28. doi:10.1080/17470218.2012.751117.

    Article  Google Scholar 

  • Weger, U. W., & Loughnan, S. (2015). Using participant choice to enhance memory performance. Applied Cognitive Psychology, 29(3), 345–349. doi:10.1002/acp.3088.

    Article  Google Scholar 

  • Yeh, Y. Y., & Wickens, C. D. (1988). Dissociation of performance and subjective measures of workload. Human Factors, 30(1), 111–120. doi:10.1177/001872088803000110.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Ulrich Weger and one anonymous reviewer for helpful comments on a previous version of this manuscript. Further, we would like to thank the following student research assistants for help with data collection at our lab: Nandi Sarai Altherr and Josepha Schmitt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Steinborn.

Ethics declarations

Ethical statements

Informed consent was obtained from the participants regarding their agreement with their participation in this research. Our study was in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All authors declare that there are no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinborn, M.B., Langner, R. & Huestegge, L. Mobilizing cognition for speeded action: try-harder instructions promote motivated readiness in the constant-foreperiod paradigm. Psychological Research 81, 1135–1151 (2017). https://doi.org/10.1007/s00426-016-0810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-016-0810-1

Keywords

Navigation