Skip to main content

Advertisement

Log in

The role of ENaC in vascular endothelium

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Once upon a time, the expression of the epithelial sodium channel (ENaC) was mainly assigned to the kidneys, colon and sweat glands where it was considered to be the main determinant of sodium homeostasis. Recent, though indirect, evidence for the possible existence of ENaC in a non-epithelial tissue was derived from the observation that the vascular endothelium is a target for aldosterone. Inhibitory actions of the intracellular aldosterone receptors by spironolactone and, more directly, by ENaC blockers such as amiloride supported this view. Shortly after, direct data on the expression of ENaC in vascular endothelium could be demonstrated. There, endothelial ENaC (EnNaC) could be defined as a major regulator of cellular mechanics which is a critical parameter in differentiating between vascular function and dysfunction. Foremost, the mechanical stiffness of the endothelial cell cortex, a layer 50–200 nm beneath the plasma membrane, has been shown to play a crucial role as it controls the production of the endothelium-derived vasodilator nitric oxide (NO) which directly affects the tone of the vascular smooth muscle cells. In contrast to soft endothelial cells, stiff endothelial cells release reduced amounts of NO, the hallmark of endothelial dysfunction. Thus, the combination of endothelial stiffness and myogenic tone might increase the peripheral vascular resistance. An elevation of arterial blood pressure is supposed to be the consequence of such functional changes. In this review, EnNaC is discussed as an aldosterone-regulated plasma membrane protein of the vascular endothelium that could significantly contribute to maintaining of an appropriate arterial blood pressure but, if overexpressed, could participate in the pathogenesis of arterial hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abriel H, Horisberger J-D (1999) Feedback inhibition of rat amiloride-sensitive epithelial sodium channels expressed in Xenopus laevis oocytes. J Physiol Lond 516:31–43

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62:573–594

    PubMed  CAS  Google Scholar 

  3. Alvarez de la Rosa D, Li H, Canessa CM (2002) Effects of aldosterone on biosynthesis, traffic, and functional expression of the epithelial sodium channel in A6 cells. J Gen Physiol 119:427–442

    PubMed  CAS  Google Scholar 

  4. Ambrosius WT, Bloem LJ, Zhou L, Rebhun JF, Snyder PM, Wagner MA, Guo C, Pratt JH (1999) Genetic variants in the epithelial sodium channel in relation to aldosterone and potassium excretion and risk for hypertension. Hypertension 34:631–637

    PubMed  CAS  Google Scholar 

  5. Beesley AH, Hornby D, White SJ (1998) Regulation of distal nephron K + channels (ROMK) mRNA expression by aldosterone in rat kidney. J Physiol 509(Pt 3):629–634

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Berger S, Bleich M, Schmid W, Greger R, Schutz G (2000) Mineralocorticoid receptor knockout mice: lessons on Na + metabolism. Kidney Int 57:1295–1298

    PubMed  CAS  Google Scholar 

  7. Butterworth MB, Edinger RS, Johnson JP, Frizzell RA (2005) Acute ENaC Stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol 125:81–101

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Caldwell RA, Boucher RC, Stutts MJ (2004) Serine protease activation of near-silent epithelial Na+ channels. Am J Physiol Cell Physio 286:190–194

    Google Scholar 

  9. Callies C, Fels J, Liashkovich I, Kliche K, Jeggle P, Kusche-Vihrog K, Oberleithner H (2011) Membrane potential depolarization decreases the stiffness of vascular endothelial cells. J Cell Sci 124:1936–1942

    PubMed  CAS  Google Scholar 

  10. Canessa CM, Horisberger J-D, Schild L, Rossier BC (1995) Expression cloning of the epithelial sodium channel. Kidney Intern 48:950–955

    CAS  Google Scholar 

  11. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger J-D, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    PubMed  CAS  Google Scholar 

  12. Caprio M, Newfell BG, la Sala A, Baur W, Fabbri A, Rosano G, Mendelsohn ME, Jaffe IZ (2008) Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ Res 102:1359–1367

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Carattino MD, Hughey RP, Kleyman TR (2008) Proteolytic processing of the epithelial sodium channel gamma subunit has a dominant role in channel activation. J Biol Chem 283:25290–25295

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Chen W, Valamanesh F, Mirshahi T, Soria J, Tang R, Agarwal MK, Mirshahi M (2004) Aldosterone signaling modifies capillary formation by human bone marrow endothelial cells. Vascul Pharmacol 40(6):269–277

    PubMed  CAS  Google Scholar 

  15. Chen LM, Wang C, Chen M, Marcello MR, Chao J, Chao L, Chai KX (2006) Prostasin attenuates inducible nitric oxide synthase expression in lipopolysaccharide-induced urinary bladder inflammation. Am J Physiol Renal Physiol 291:F567–F577

    PubMed  CAS  Google Scholar 

  16. Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Muenster C, Chraibi A, Pratt HJ, Horisberger J-D, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel surface expression. EMBO J 20:7052–7059

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Diakov A, Bera K, Mokrushina M, Krueger B, Korbmacher C (2008) Cleavage in the γ-subunit of the epithelial sodium channel (ENaC) plays an important role in the proteolytic activation of near-silent channels. J Physiol 283:25290–25295

    Google Scholar 

  18. Druppel V, Kusche-Vihrog K, Grossmann C, Gekle M, Kasprzak B, Brand E, Pavenstadt H, Oberleithner H, Kliche K (2013) Long-term application of the aldosterone antagonist spironolactone prevents stiff endothelial cell syndrome. FASEB J 27:3652–3659

    PubMed  Google Scholar 

  19. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992

    PubMed  CAS  Google Scholar 

  20. Falkenstein E, Christ M, Feuring M, Wehling M (2000) Specific nongenomic actions of aldosterone. Kidney Intern 57:1390–1394

    CAS  Google Scholar 

  21. Feletou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291:H985–H1002

    PubMed  CAS  Google Scholar 

  22. Fels J, Callies C, Kusche-Vihrog K, Oberleithner H (2010) Nitric oxide release follows endothelial nanomechanics and not vice versa. Pflugers Arch 460:915–923

    PubMed  CAS  Google Scholar 

  23. Firsov D, Gautschi I, Merillat A-M, Rossier BC, Schild L (1998) The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17:344–352

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Funder JW (2005) Mineralocorticoid receptors: distribution and activation. Heart Fail Rev 10:15–22

    PubMed  CAS  Google Scholar 

  25. Funder JW, Reincke M (2010) Aldosterone: a cardiovascular risk factor? Biochimica Biophysica Acta 1802:1188–1192

    CAS  Google Scholar 

  26. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  27. Fyfe GK, Canessa CM (1998) Subunit composition determines the single chancel kinetics of the epithelial sodium channel. J Gen Physiol 112:423–432

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77:359–396

    PubMed  CAS  Google Scholar 

  29. Gimbrone MA Jr (1995) Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol 75:67B–70B

    PubMed  CAS  Google Scholar 

  30. Golestaneh N, Klein C, Valamanesh F, Suarez G, Agarwal MK, Mirshahi M (2001) Mineralocorticoid receptor-mediated signaling regulates the ion gated sodium channel in vascular endothelial cells and requires an intact cytoskeleton. Biochem Biophys Res Commun 280:1300–1306

    PubMed  CAS  Google Scholar 

  31. Grossmann C, Gekle M (2009) New aspects of rapid aldosterone signaling. Mol Cell Endocrinol 308:53–62

    PubMed  CAS  Google Scholar 

  32. Guyton AC (1991) Blood pressure control—special role of the kidneys and body fluids. Science 252:1813–1816

    PubMed  CAS  Google Scholar 

  33. Harvey KF, Dinudom A, Komwatana P, Jolliffe CN, Day ML, Parasivam G, Cook DI, Kumar S (1999) All three WW domains of murine Nedd4 are involved in the regulation of epithelial sodium channels by intracellular Na+. J Biol Chem 274:12525–12530

    PubMed  CAS  Google Scholar 

  34. He FJ, Burnier M, MacGregor GA (2011) Nutrition in cardiovascular disease: salt in hypertension and heart failure. Eur Heart J 32:3073–3080

    PubMed  CAS  Google Scholar 

  35. Hillebrand U, Schillers H, Riethmüller C, Stock C, Wilhelmi M, Oberleithner H, Hausberg M (2007) Dose-dependent endothelial cell growth and stiffening by aldosterone: endothelial protection by eplerenone. J Hypertens 25:639–647

    PubMed  CAS  Google Scholar 

  36. Horisberger J-D, Chraibi A (2004) Epithelial sodium channel: a ligand-gated channel? Nephron Physiol 96(2):37–41

    Google Scholar 

  37. Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, Carattino MD, Kleyman TR (2003) Maturation of the epithelial Na+ channel involves proteolytic processing of the a- and g-subunits. J Biol Chem 278:37073–37082

    PubMed  CAS  Google Scholar 

  38. Jeggle P, Callies C, Tarjus A, Fassot C, Fels J, Oberleithner H, Jaisser F, Kusche-Vihrog K (2013) Epithelial sodium channel stiffens the vascular endothelium in vitro and in Liddle mice. Hypertension 61:1053–1059

    PubMed  CAS  Google Scholar 

  39. Jernigan NL, Drummond HA (2005) Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol 289:F891–F901

    PubMed  CAS  Google Scholar 

  40. Kasas S, Wang X, Hirling H, Marsault R, Huni B, Yersin A, Regazzi R, Grenningloh G, Riederer B, Forro L, Dietler G, Catsicas S (2005) Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskeleton 62:124–132

    PubMed  CAS  Google Scholar 

  41. Kliche K, Jeggle P, Pavenstadt H, Oberleithner H (2011) Role of cellular mechanics in the function and life span of vascular endothelium. Pflugers Arch 462:209–217

    PubMed  CAS  Google Scholar 

  42. Knight KK, Wentzlaff DM, Snyder PM (2008) Intracellular sodium regulates proteolytic activation of the epithelial sodium channel. J Biol Chem 283:27477–27482

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Kolla V, Litwack G (2000) Transcriptional regulation of the human Na/K ATPase via the human mineralocorticoid receptor. Mol Cell Biochem 204:35–40

    PubMed  CAS  Google Scholar 

  44. Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493

    PubMed  CAS  Google Scholar 

  45. Korte S, Wiesinger A, Straeter AS, Peters W, Oberleithner H, Kusche-Vihrog K (2011) Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis. Pflugers Arch 463:269–278

    PubMed  Google Scholar 

  46. Kosari F, Sheng S, Li J, Mak D-OD, Foskett JK, Kleyman TR (1998) Subunit stoichiometry of the epithelial sodium channel. J Biol Chem 273:13469–13474

    PubMed  CAS  Google Scholar 

  47. Krueger B, Schlotzer-Schrehardt U, Haerteis S, Zenkel M, Chankiewitz VE, Amann KU, Kruse FE, Korbmacher C (2012) Four subunits (alphabetagammadelta) of the epithelial sodium channel (ENaC) are expressed in the human eye in various locations. Invest Ophthalmol Vis Sci 53:596–604

    PubMed  CAS  Google Scholar 

  48. Kusche-Vihrog K, Callies C, Fels J, Oberleithner H (2009) The epithelial sodium channel (ENaC): mediator of the aldosterone response in the vascular endothelium? Steroids 75:544–549

    PubMed  Google Scholar 

  49. Kusche-Vihrog K, Sobczak K, Bangel N, Wilhelmi M, Nechyporuk-Zloy V, Schwab A, Schillers H, Oberleithner H (2008) Aldosterone and amiloride alter ENaC abundance in vascular endothelium. Pflugers Arch 455:849–857

    PubMed  CAS  Google Scholar 

  50. Lang F (2011) Stiff endothelial cell syndrome in vascular inflammation and mineralocorticoid excess. Hypertension 57:146–147

    PubMed  CAS  Google Scholar 

  51. Li XY, Cai XL, Bian PD, Hu LR (2012) High salt intake and stroke: meta-analysis of the epidemiologic evidence. CNS Neurosci Ther 18:691–701

    PubMed  Google Scholar 

  52. Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458:111–135

    PubMed  CAS  Google Scholar 

  53. Mazzochi C, Benos DJ, Smith PR (2006) Interaction of epithelial ion channels with the actin-based cytoskeleton. Am J Physiol Renal Physiol 291:F1113–F1122

    PubMed  CAS  Google Scholar 

  54. Mazzochi C, Bubien JK, Smith PR, Benos DJ (2006) The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J Biol Chem 281:6528–6538

    PubMed  CAS  Google Scholar 

  55. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85:679–715

    PubMed  CAS  Google Scholar 

  56. Mirshahi M, Nicolas C, Mirshahi S, Golestaneh N, d' Hermies F, Agarwal MK (1999) Immunochemical analysis of the sodium channel in rodent and human eye. Exp Eye Res 69:21–32

    PubMed  CAS  Google Scholar 

  57. Mullins LJ, Bailey MA, Mullins JJ (2006) Hypertension, kidney, and transgenics: a fresh perspective. Physiol Rev 86:709–746

    PubMed  CAS  Google Scholar 

  58. Murdaca J, Treins C, Monthouel-Kartmann MN, Pontier-Bres R, Kumar S, Van OE, Giorgetti-Peraldi S (2004) Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem 279:26754–26761

    PubMed  CAS  Google Scholar 

  59. Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T (2007) Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension 50:877–883

    PubMed  CAS  Google Scholar 

  60. Nguyen Dinh CA, Griol-Charhbili V, Loufrani L, Labat C, Benjamin L, Farman N, Lacolley P, Henrion D, Jaisser F (2010) The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J 24:2454–2463

    Google Scholar 

  61. Nguyen Dinh CA, Jaisser F (2012) Extrarenal effects of aldosterone. Curr Opin Nephrol Hypertens 21:147–156

    Google Scholar 

  62. Oberleithner H (2012) Two barriers for sodium in vascular endothelium? Ann Med 44(Suppl 1):S143–S148

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Oberleithner H (2013) Vascular endothelium leaves fingerprints on the surface of erythrocytes. Pflugers Arch. doi:10.1007/s00424-013-1288-y

    PubMed Central  Google Scholar 

  64. Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmuller C, MacGregor GA, de Wardener HE (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci U S A 106:2829–2834

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Oberleithner H, Kusche-Vihrog K, Schillers H (2010) Endothelial cells as vascular salt sensors. Kidney Int 77:490–494

    PubMed  CAS  Google Scholar 

  66. Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K (2011) Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch 462:519–528

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Oberleithner H, Riethmuller C, Ludwig T, Hausberg M, Schillers H (2006) Aldosterone remodels human endothelium. Acta Physiol (Oxf) 187:305–312

    CAS  Google Scholar 

  68. Oberleithner H, Riethmüller C, Ludwig T, Shahin V, Stock C, Schwab A, Hausberg M, Kusche K, Schillers H (2006) Differential action of steroid hormones on human endothelium. J Cell Sci 119:1926–1932

    PubMed  CAS  Google Scholar 

  69. Oberleithner H, Riethmuller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M (2007) Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A 104:16281–16286

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Oberleithner H, Schneider SW, Albermann L, Hillebrand U, Ludwig T, Riethmüller C, Shahin V, Schäfer C, Schillers H (2003) Endothelial cell swelling by aldosterone. J Membr Biol 196:163–172

    PubMed  CAS  Google Scholar 

  71. Oberleithner H, Wilhelmi M (2013) Determination of erythrocyte sodium sensitivity in man. Pflugers Arch. doi:10.1007/s00424-013-1289-x

    PubMed Central  Google Scholar 

  72. Oda T, Makino K, Yamashita I, Namba K, Maeda Y (2001) Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength. Biophys J 80:841–851

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Patel AB, Frindt G, Palmer LG (2013) Feedback inhibition of ENaC during acute sodium loading in vivo. Am J Physiol Renal Physiol 304:F222–F232

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Perez FR, Venegas F, Gonzalez M, Andres S, Vallejos C, Riquelme G, Sierralta J, Michea L (2009) Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries. Hypertension 53:1000–1007

    PubMed  CAS  Google Scholar 

  75. Pesen D, Hoh JH (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Pesen D, Hoh JH (2005) Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells. FEBS Lett 579:473–476

    PubMed  CAS  Google Scholar 

  77. Peters W, Drueppel V, Kusche-Vihrog K, Schubert C, Oberleithner H (2012) Nanomechanics and sodium permeability of endothelial surface layer modulated by hawthorn extract WS 1442. PLoS One 7:e29972

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Ritz E (2010) Salt and hypertension. Nephrology (Carlton ) 15(Suppl 2):49–52

    Google Scholar 

  79. Ronzaud C, Loffing-Cueni D, Hausel P, Debonneville A, Malsure SR, Fowler-Jaeger N, Boase NA, Perrier R, Maillard M, Yang B, Stokes JB, Koesters R, Kumar S, Hummler E, Loffing J, Staub O (2013) Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Invest 123:657–665

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Rotin D, Bar-Sagi D, O'Brodovich H, Merilainen J, Lehto VP, Canessa CM, Rossier BC, Downey GP (1994) An SH3 binding region in the epithelial Na + channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J 13:4440–4450

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Rotin D, Staub O (2011) Role of the ubiquitin system in regulating ion transport. Pflugers Arch 461:1–21

    PubMed  CAS  Google Scholar 

  82. Rotin D, Staub O (2012) Nedd4-2 and the regulation of epithelial sodium transport. Front Physiol 3:212

    PubMed Central  PubMed  Google Scholar 

  83. Sanders PW (2009) Vascular consequences of dietary salt intake. Am J Physiol Renal Physiol 297:F237–F243

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit-Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P (2005) Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation 112:60–68

    PubMed  CAS  Google Scholar 

  85. Schild L (2010) The epithelial sodium channel and the control of sodium balance. Biochimica Biophysica Acta 1802:1159–1165

    CAS  Google Scholar 

  86. Sessa WC (2004) eNOS at a glance. J Cell Sci 117:2427–2429

    PubMed  CAS  Google Scholar 

  87. Sheng S, Maarouf AB, Bruns JB, Hughey RP, Kleyman TR (2007) Functional role of extracellular loop cysteine residues of the epithelial Na + channel in Na + self-inhibition. J Biol Chem 282:20180–20190

    PubMed  CAS  Google Scholar 

  88. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW (1994) Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79:407–414

    PubMed  CAS  Google Scholar 

  89. Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, Kohler R (2006) Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2 + -activated K + channel. Circ Res 99:537–544

    PubMed  CAS  Google Scholar 

  90. Smith PR, Saccomani G, Joe E-H, Angelides KJ, Benos DJ (1991) Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc Natl Acad Sci U S A 88:6971–6975

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ (1998) Electropyhsiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 273:681–684

    PubMed  CAS  Google Scholar 

  92. Staruschenko A, Adams E, Booth RE, Stockand JD (2005) Epithelial Na+ channel subunit stoichiometry. Biophys J 88:3966–3975

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na + channel deleted in Liddle's syndrome. EMBO J 15:2371–2380

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Stewart AP, Haerteis S, Diakov A, Korbmacher C, Edwardson JM (2011) Atomic force microscopy reveals the architecture of the epithelial sodium channel (ENaC). J Biol Chem 286:31944–31952

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Suckling RJ, He FJ, Markandu ND, MacGregor GA (2012) Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int 81:407–411

    PubMed  CAS  Google Scholar 

  96. Titze J, Machnik A (2010) Sodium sensing in the interstitium and relationship to hypertension. Curr Opin Nephrol Hypertens 19:385–392

    PubMed  Google Scholar 

  97. Van Huysse JW, Amin MS, Yang B, Leenen FH (2012) Salt-induced hypertension in a mouse model of Liddle syndrome is mediated by epithelial sodium channels in the brain. Hypertension 60:691–696

    PubMed Central  PubMed  Google Scholar 

  98. Verrey F, Loffing J, Zecevic M, Heitzmann D, Staub O (2003) SGK1: aldosterone-induced relay of Na + transport regulation in distal kidney nephron cells. Cell Physiol Biochem 13:21–28

    PubMed  CAS  Google Scholar 

  99. Volk T, Konstas A-A, Bassalaý P, Ehmke H, Korbmacher C (2000) Extracellular Na+ removal reduces 'run-down' of epithelial Na+ channel (ENaC) expressed in Xenopus oocytes. Pflugers Arch 447:884–894

    Google Scholar 

  100. Volk T, Konstas AA, Bassalay P, Ehmke H, Korbmacher C (2004) Extracellular Na + removal attenuates rundown of the epithelial Na + -channel (ENaC) by reducing the rate of channel retrieval. Pflugers Arch 447:884–894

    PubMed  CAS  Google Scholar 

  101. Wang S, Meng F, Mohan S, Champaneri B, Gu Y (2009) Functional ENaC channels expressed in endothelial cells: a new candidate for mediating shear force. Microcirculation 16:276–287

    PubMed  Google Scholar 

  102. Warnock DG (2013) The amiloride-sensitive endothelial sodium channel and vascular tone. Hypertension 61:952–954

    PubMed  CAS  Google Scholar 

  103. Wildling L, Hinterdorfer P, Kusche-Vihrog K, Treffner Y, Oberleithner H (2009) Aldosterone receptor sites on plasma membrane of human vascular endothelium detected by a mechanical nanosensor. Pflugers Arch 458:223–230

    PubMed  CAS  Google Scholar 

  104. Young MJ, Rickard AJ (2012) Mechanisms of mineralocorticoid salt-induced hypertension and cardiac fibrosis. Mol Cell Endocrinol 350:248–255

    PubMed  CAS  Google Scholar 

  105. Zhou ZH, Bubien JK (2001) Nongenomic regulation of ENaC by aldosterone. Am J Physiol Cell Physiol 281:C1118–C1130

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (Koselleck-OB 63/18, KU 1496/7-1), the ‘Innovative Medical Research’ of the University of Muenster Medical School (KU 120808) and the Else-Kröner-Fresenius Stiftung (2010 A116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Kusche-Vihrog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusche-Vihrog, K., Jeggle, P. & Oberleithner, H. The role of ENaC in vascular endothelium. Pflugers Arch - Eur J Physiol 466, 851–859 (2014). https://doi.org/10.1007/s00424-013-1356-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1356-3

Keywords

Navigation