Skip to main content
Log in

Phenotype analysis of mice deficient in the peptide transporter PEPT2 in response to alterations in dietary protein intake

  • Epithelial Transport
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The peptide transporter PEPT2 mediates cellular uptake of di- and tripeptides driven by an inwardly directed electrochemical proton gradient. In mammals PEPT2 is found in a variety of organs such as kidney, lung, brain, enteric nervous system, and mammary gland. Highest expression levels are observed in renal proximal tubules where PEPT2 contributes to reabsorption of filtered di- and tripeptides. To assess the physiological importance of the transporter in overall metabolism, we have generated a Pept2 −/− mouse line that lacks a functional PEPT2 protein. Here we present data on body weight, organ weights, and blood pressure. Mice were then fed diets containing either 10, 20, or 30% (w/w) protein, and food and water intake rates as well as plasma and urine parameters were determined. In spite of PEPT2 expression in a variety of tissues, only subtle phenotypic changes were observed. Male PEPT2 null mice displayed lower bodyweight and lower relative heart weight, whereas, relative kidney weight was lower in female Pept2 −/− mice. No differences were found in blood pressure. When fed diets with different protein contents, Pept2 −/− mice adapted food intake to dietary protein content with higher consumption rates on low protein and reduced food intake rates on the high protein diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adibi SA (1997) Renal assimilation of oligopeptides: physiological mechanisms and metabolic importance. Am J Physiol 272:E723–E736

    PubMed  CAS  Google Scholar 

  2. Botka CW, Wittig TW, Graul RC, Nielsen CU, Higaka K, Amidon GL, Sadee W (2000) Human proton/oligopeptide transporter (POT) genes: identification of putative human genes using bioinformatics. AAPS PharmSci 2(2):E16

    Article  PubMed  CAS  Google Scholar 

  3. Chee KM, Romsos DR, Bergen WG, Leveille GA (1981) Protein intake regulation and nitrogen retention in young obese and lean mice. J Nutr 111:58–67

    PubMed  CAS  Google Scholar 

  4. Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW (1980) Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J Biol Chem 255:401–407

    PubMed  CAS  Google Scholar 

  5. Cvetkovic B, Sigmund CD (2000) Understanding hypertension through genetic manipulation in mice. Kidney Int 57:863–874

    Article  PubMed  CAS  Google Scholar 

  6. Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  PubMed  CAS  Google Scholar 

  7. Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447:610–618

    Article  PubMed  CAS  Google Scholar 

  8. Daniel H, Rubio-Aliaga I (2003) An update on renal peptide transporters. Am J Physiol Renal Physiol 284:F885–F892

    PubMed  CAS  Google Scholar 

  9. Dziuba J, Minkiewicz P, Nalecz D, Iwaniak A (1999) Database of biologically active peptide sequences. Nahrung 43:190–195

    Article  PubMed  CAS  Google Scholar 

  10. Fei YJ, Ganapathy V, Leibach FH (1998) Molecular and structural features of the proton-coupled oligopeptide transporter superfamily. Prog Nucleic Acid Res Mol Biol 58:239–261

    Article  PubMed  CAS  Google Scholar 

  11. Filho JC, Hazel SJ, Anderstam B, Bergstrom J, Lewitt M, Hall K (1999) Effect of protein intake on plasma and erythrocyte free amino acids and serum IGF-I and IGFBP-1 levels in rats. Am J Physiol 277:E693–E701

    PubMed  CAS  Google Scholar 

  12. Li G-HLG-WS, Yong-Hui; Shrestha, Sundar (2004) Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 24:469–486

    CAS  Google Scholar 

  13. Lin CJ, Smith DE (1999) Glycylsarcosine uptake in rabbit renal brush border membrane vesicles isolated from outer cortex or outer medulla: evidence for heterogeneous distribution of oligopeptide transporters. AAPS PharmSci 1:E1

    Article  PubMed  CAS  Google Scholar 

  14. Matsui T, Li CH, Osajima Y (1999) Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ. J Pept Sci 5:289–297

    Article  PubMed  CAS  Google Scholar 

  15. Matsui T, Tamaya K, Seki E, Osajima K, Matsumo K, Kawasaki T (2002) Absorption of Val-Tyr with in vitro angiotensin I-converting enzyme inhibitory activity into the circulating blood system of mild hypertensive subjects. Biol Pharm Bull 25:1228–1230

    Article  PubMed  CAS  Google Scholar 

  16. Meissner B, Boll M, Daniel H, Baumeister R (2004) Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. J Biol Chem 279:36739–36745

    Article  PubMed  CAS  Google Scholar 

  17. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    PubMed  CAS  Google Scholar 

  18. Pastore A, Massoud R, Motti C, Lo Russo A, Fucci G, Cortese C, Federici G (1998) Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine. Clin Chem 44:825–832

    PubMed  CAS  Google Scholar 

  19. Remesy C, Moundras C, Morand C, Demigne C (1997) Glutamine or glutamate release by the liver constitutes a major mechanism for nitrogen salvage. Am J Physiol 272:G257–G264

    PubMed  CAS  Google Scholar 

  20. Rubio-Aliaga I, Boll M, Daniel H (2000) Cloning and characterization of the gene encoding the mouse peptide transporter PEPT2. Biochem Biophys Res Commun 276:734–741

    Article  PubMed  CAS  Google Scholar 

  21. Rubio-Aliaga I, Daniel H (2002) Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol Sci 23:434–440

    Article  PubMed  CAS  Google Scholar 

  22. Rubio-Aliaga I, Frey I, Boll M, Groneberg DA, Eichinger HM, Balling R, Daniel H (2003) Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney. Mol Cell Biol 23:3247–3252

    Article  PubMed  CAS  Google Scholar 

  23. Ruhl A, Hoppe S, Frey I, Daniel H, Schemann M (2005) Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. J Comp Neurol 490:1–11

    Article  PubMed  CAS  Google Scholar 

  24. Sakata K, Yamashita T, Maeda M, Moriyama Y, Shimada S, Tohyama M (2001) Cloning of a lymphatic peptide/histidine transporter. Biochem J 356:53–60

    Article  PubMed  CAS  Google Scholar 

  25. Seal CJ, Parker DS (1991) Isolation and characterization of circulating low molecular weight peptides in steer, sheep and rat portal and peripheral blood. Comp Biochem Physiol B 99:679–685

    Article  PubMed  CAS  Google Scholar 

  26. Shen H, Smith DE, Keep RF, Xiang J, Brosius FC, 3rd (2003) Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. J Biol Chem 278:4786–4791

    Article  PubMed  CAS  Google Scholar 

  27. Steiner HY, Naider F, Becker JM (1995) The PTR family: a new group of peptide transporters. Mol Microbiol 16:825–834

    Article  PubMed  CAS  Google Scholar 

  28. Toyomizu M, Hayashi K, Yamashita K, Tomita Y (1988) Response surface analyses of the effects of dietary protein on feeding and growth patterns in mice from weaning to maturity. J Nutr 118:86–92

    PubMed  CAS  Google Scholar 

  29. Toyomizu M, Kimura S, Hayashi K, Tomita Y, Yamashita K (1989) Body protein and energy accretion in response to dietary protein level in mice from weaning to maturity: Response surface analyses of the effects of dietary protein on feeding and growth patterns in mice from weaning to maturity. J Nutr 119:1028–1033

    PubMed  CAS  Google Scholar 

  30. Whitedouble dagger BD, Porter MH, Martin RJ (2000) Protein selection, food intake, and body composition in response to the amount of dietary protein. Physiol Behav 69:383–389

    Article  PubMed  CAS  Google Scholar 

  31. Yamashita T, Shimada S, Guo W, Sato K, Kohmura E, Hayakawa T, Takagi T, Tohyama M (1997) Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem 272:10205–10211

    Article  PubMed  CAS  Google Scholar 

  32. Yang XD, Ma JY, Barger MW, Ma JK (2002) Transport and utilization of arginine and arginine-containing peptides by rat alveolar macrophages. Pharm Res 19:825–831

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Wolf Erhard for providing the anesthetic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannelore Daniel.

Additional information

This work was supported in part by a grant (1512/282 72-5) from the Else-Kröner-Fresenius Stiftung, the European FP6 project EUGINDAT and the National Genome Research Network (NGFN).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, I.M., Rubio-Aliaga, I., Klempt, M. et al. Phenotype analysis of mice deficient in the peptide transporter PEPT2 in response to alterations in dietary protein intake. Pflugers Arch - Eur J Physiol 452, 300–306 (2006). https://doi.org/10.1007/s00424-005-0042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-0042-5

Keywords

Navigation