Skip to main content
Log in

The relationship between leg stiffness, forces and neural control of the leg musculature during the stretch-shortening cycle is dependent on the anticipation of drop height

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed at investigating how prior knowledge of drop heights affects proactive and reactive motor control in drop jumps (DJ).

Methods

In 22 subjects, the effect of knowledge of three different drop heights (20, 30, 40 cm) during DJs was evaluated in seven conditions: three different drop heights were either known, unknown or cheated (announced 40 cm, but actual drop height was 20 cm). Peak ground reaction force (Fmax) to body weight (BW) ratio (Fmax/BW) and electromyographic (EMG) activities of three shank and five thigh muscles were assessed 150 ms before and during ground contact (GC). Ankle, knee and hip joint kinematics were recorded in the sagittal plane.

Results

Leg stiffness, proactive and reactive EMG activity of the leg muscles diminished in unknown and cheat conditions for all drop heights (7–33% and 2–26%, respectively). Antagonistic co-activation increased in unknown (3–37%). At touchdown, increased flexion in knee (~ 5.3° ± 1.9°) and hip extension (~ 2° ± 0.6°) were observed in unknown, followed by an increased angular excursion in hip (~ 2.3° ± 0.2°) and knee joints (~ 5.6° ± 0.2°) during GC (p < 0.05). Correlations between changes in activation intensities, joint kinematics, leg stiffness and Fmax/BW (p < 0.05) indicate that anticipation changes the neuromechanical coupling of DJs. No dropouts were recorded.

Conclusion

These findings underline that anticipation influences timing and adjustment of motor responses. It is argued that proactive and reactive modulations associated with diminished activation intensities in leg extensors are functionally relevant in explaining changes in leg stiffness and subsequent decline in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BF:

M. biceps femoris

BW:

Body weight

CNS:

Central nervous system

COM:

Center of mass

DJ:

Drop jump

Fmax:

Peak ground reaction force

GC:

Ground contact

GCT:

Ground contact time

GL:

M. gastrocnemius lateralis

Gmax:

M. gluteus maximus

iEMG:

Integrated electromyographic activity

LLR:

Late-latency response

MLR:

Medium-latency response

MTU:

Muscle tendon unit

MVC:

Maximal voluntary contraction

PRE:

Pre-activation

RF:

M. rectus femoris

rmANOVA:

Repeated-measures analysis of variance

SD:

Standard deviation

SLR:

Short-latency response

SOL:

M. soleus

SSC:

Stretch-shortening cycle

TA:

M. tibialis anterior

VL:

M. vastus lateralis

VM:

M. vastus medialis

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Bojsen-Moller F, Dyhre-Poulsen P (2000) Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 10:58–67

    Article  CAS  PubMed  Google Scholar 

  • Arai A, Ishikawa M, Ito A (2013) Agonist-antagonist muscle activation during drop jumps. Eur J Sport Sci 13:490–498

    Article  PubMed  Google Scholar 

  • Arampatzis A, Bruggemann GP, Klapsing GM (2001a) Leg stiffness and mechanical energetic processes during jumping on a sprung surface. Med Sci Sports Exerc 33:923–931

    Article  CAS  PubMed  Google Scholar 

  • Arampatzis A, Schade F, Walsh M, Brüggemann G-P (2001b) Influence of leg stiffness and its effect on myodynamic jumping performance. J Electromyogr Kinesiol 11:355–364

    Article  CAS  PubMed  Google Scholar 

  • Arampatzis A, Stafilidis S, Morey-Klapsing G, Brüggemann GP (2004) Interaction of the human body and surfaces of different stiffness during drop jumps. Med Sci Sports Exerc 36:451–459

    Article  PubMed  Google Scholar 

  • Behm DG, Drinkwater EJ, Willardson JM, Cowley PM (2010) Canadian society for exercise physiology position stand: the use of instability to train the core in athletic and nonathletic conditioning. Appl Physiol Nutr Metab 35:109–112

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

    Google Scholar 

  • Benjamini Y, Yekutieli D (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171:783–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum Y, Lipfert SW, Seyfarth A (2009) Effective leg stiffness in running. J Biomech 42:2400–2405

    Article  PubMed  Google Scholar 

  • Bobbert MF, Huijing PA, van Ingen Schenau GJ (1987a) Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med Sci Sports Exerc 19:332–338

    CAS  PubMed  Google Scholar 

  • Bobbert MF, Huijing PA, van Ingen Schenau GJ (1987b) Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med Sci Sports Exerc 19:339–346

    CAS  PubMed  Google Scholar 

  • Brauner T, Sterzing T, Wulf M, Horstmann T (2014) Leg stiffness: comparison between unilateral and bilateral hopping tasks. Hum Mov Sci 33:263–272

    Article  PubMed  Google Scholar 

  • Butler RJ, Crowell HP III, Davis IM (2003) Lower extremity stiffness: implications for performance and injury. Clin Biomech (Bristol, Avon) 18:511–517

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  • Coleman DR, Cannavan D, Horne S, Blazevich AJ (2012) Leg stiffness in human running: comparison of estimates derived from previously published models to direct kinematic-kinetic measures. J Biomech 45:1987–1991

    Article  PubMed  Google Scholar 

  • Erdfelder E, Faul F, Buchner A (1996) GPOWER: a general power analysis program. Behav Res Methods Instrum Comput 28:1–11

    Article  Google Scholar 

  • Farley CT, González O (1996) Leg stiffness and stride frequency in human running. J Biomech 29:181–186

    Article  CAS  PubMed  Google Scholar 

  • Farley CT, Houdijk HH, van Strien C, Louie M (1998) Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J Appl Physiol (Bethesda, Md.: 1985) 85:1044–1055

    Article  CAS  Google Scholar 

  • Ferris DP, Farley CT (1997) Interaction of leg stiffness and surfaces stiffness during human hopping. J Appl Physiol (Bethesda, Md.: 1985) 82:15–22 (discussion 13-4)

    Article  CAS  Google Scholar 

  • Flanagan EP, Galvin L, Harrison AJ (2008) Force production and reactive strength capabilities after anterior cruciate ligament reconstruction. J Athl Train 43:249–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Fong SSM, Ng SSM, Guo X, Wang Y, Chung RCK, Stat G, Ki WY, Macfarlane DJ (2015) Deficits in lower limb muscle reflex contraction latency and peak force are associated with impairments in postural control and gross motor skills of children with developmental coordination disorder: a cross-sectional study. Medicine 94:e1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Freyler K, Krause A, Gollhofer A, Ritzmann R (2016) Specific stimuli induce specific adaptations: sensorimotor training vs. reactive balance training. PLoS One 11:e0167557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambelli CN, Theisen D, Willems PA, Schepens B (2016) Human motor control of landing from a drop in simulated microgravity. J Appl Physiol (Bethesda, Md.: 1985) 121:760–770

    Article  CAS  Google Scholar 

  • Gollhofer A, Kyröläinen H (1991) Neuromuscular control of the human leg extensor muscles in jump exercises under various stretch-load conditions. Int J Sports Med 12:34–40

    Article  CAS  PubMed  Google Scholar 

  • Gollhofer A, Strojnik V, Rapp W, Schweizer L (1992) Behaviour of triceps surae muscle–tendon complex in different jump conditions. Eur J Appl Physiol 64:283–291

    Article  CAS  Google Scholar 

  • Greenwood R, Hopkins A (1976) Landing from an unexpected fall and a voluntary step. Brain J Neurol 99:375–386

    Article  CAS  Google Scholar 

  • Günther M, Blickhan R (2002) Joint stiffness of the ankle and the knee in running. J Biomech 35:1459–1474

    Article  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  CAS  PubMed  Google Scholar 

  • Hoffer JA, Andreassen S (1981) Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J Neurophysiol 45:267–285

    Article  CAS  PubMed  Google Scholar 

  • Hoffrén M, Ishikawa M, Rantalainen T, Avela J, Komi PV (2011) Age-related muscle activation profiles and joint stiffness regulation in repetitive hopping. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol 21:483–491

    Article  Google Scholar 

  • Horak FB, Diener HC, Nashner LM (1989) Influence of central set on human postural responses. J Neurophysiol 62:841–853

    Article  CAS  PubMed  Google Scholar 

  • Horita T, Komi PV, Nicol C, Kyröläinen H (2002) Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance. Eur J Appl Physiol 88:76–84

    Article  CAS  PubMed  Google Scholar 

  • Hughes G, Watkins J (2008) Lower limb coordination and stiffness during landing from volleyball block jumps. Res Sports Med (Print) 16:138–154

    Article  Google Scholar 

  • Ishikawa M, Komi PV (2004) Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol (Bethesda, Md.: 1985) 96:848–852

    Article  Google Scholar 

  • Jidovtseff B, Quievre J, Harris NK, Cronin JB (2014) Influence of jumping strategy on kinetic and kinematic variables. J Sports Med Phys Fit 54:129–138

    CAS  Google Scholar 

  • Kellis E, Arabatzi F, Papadopoulos C (2003) Muscle co-activation around the knee in drop jumping using the co-contraction index. J Electromyogr Kinesiol 13:229–238

    Article  CAS  PubMed  Google Scholar 

  • Komi PV (1984) Biomechanics and neuromuscular performance. Med Sci Sports Exerc 16:26–28

    CAS  PubMed  Google Scholar 

  • Komi PV (2003) Stretch-shortening cycle. Strength Power Sport 2:184–202

    Article  Google Scholar 

  • Komi PV, Gollhofer A (1997) Stretch reflexes can have an important role in force enhancement during SSC exercise. J Appl Biomech 13:451–460

    Article  Google Scholar 

  • Konrad P (2006) The ABC of EMG: a practical introduction to kinesiological electromyography. Noraxon USA, Inc, Scottsdale

    Google Scholar 

  • Kramer A, Ritzmann R, Gruber M, Gollhofer A (2012) Leg stiffness can be maintained during reactive hopping despite modified acceleration conditions. J Biomech 45:1816–1822

    Article  CAS  PubMed  Google Scholar 

  • Kuitunen S, Kyrolainen H, Avela J, Komi PV (2007) Leg stiffness modulation during exhaustive stretch-shortening cycle exercise. Scand J Med Sci Sports 17:67–75

    CAS  PubMed  Google Scholar 

  • Kyrölänen H, Komi PV, Kim DH (1991) Effects of power training on neuromuscular performance and mechanical efficiency. Scand J Med Sci Sports 1:78–87

    Article  Google Scholar 

  • Lee RG, Tatton WG (1975) Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders. Can J Neurol Sci (Le journal canadien des sciences neurologiques) 2:285–293

    Article  CAS  Google Scholar 

  • Leonhart R, Schornstein K, Groß J (2004) Lehrbuch Statistik. Einstieg und Vertiefung. Huber, Bern

    Google Scholar 

  • Lesinski M, Prieske O, Beurskens R, Behm DG, Granacher U (2016) Effects of drop height and surface instability on neuromuscular activation during drop jumps. Scand J Med Sci Sports 27:1090–1098

    Article  PubMed  Google Scholar 

  • Lesinski M, Prieske O, Beurskens R, Behm D, Granacher U (2018) Effects of drop-height and surface instability on jump performance and knee kinematics. Int J Sports Med 39:50–57

    Article  PubMed  Google Scholar 

  • Leukel C, Taube W, Gruber M, Hodapp M, Gollhofer A (2009) Influence of falling height on the excitability of the soleus H-reflex during drop-jumps. Acta Physiol (Oxford, England) 192:569–576

    Article  CAS  Google Scholar 

  • Leukel C, Taube W, Lorch M, Gollhofer A (2012) Changes in predictive motor control in drop-jumps based on uncertainties in task execution. Hum Mov Sci 31:152–160

    Article  PubMed  Google Scholar 

  • Márquez G, Morenilla L, Taube W, Fernández-del-Olmo M (2014) Effect of surface stiffness on the neural control of stretch-shortening cycle movements. Acta Physiol (Oxford, England) 212:214–225

    Article  CAS  Google Scholar 

  • Marsden CD, Merton PA, Morton HB, Adam JER, Hallett M (1978) Automatic and voluntary responses to muscle stretch in man. Prog Clin Neurophysiol 4:167

    Google Scholar 

  • Mayer F, Baur H, Deibert P, Schmitt S, Gollhofer A (2007) Prävention von Verletzungen bei Stolper-, Rutsch- und Sturzunfällen. Einflussfaktoren von Fersenbeinfrakturen. Entwicklung einer Prüfapparatur und Evaluation präventiver Maßnahmen zur Verhütung von Fersenbeinfrakturen

  • McDonagh MJN, Duncan A (2002) Interaction of pre-programmed control and natural stretch reflexes in human landing movements. J Physiol 544:985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Moritz CT, Farley CT (2005) Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. J Exp Biol 208:939–949

    Article  PubMed  Google Scholar 

  • Oliver JL, Smith PM (2010) Neural control of leg stiffness during hopping in boys and men. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol 20:973–979

    Article  CAS  Google Scholar 

  • Prieske O, Muehlbauer T, Mueller S, Krueger T, Kibele A, Behm DG, Granacher U (2013) Effects of surface instability on neuromuscular performance during drop jumps and landings. Eur J Appl Physiol 113:2943–2951

    Article  PubMed  Google Scholar 

  • Prieske O, Muehlbauer T, Krueger T, Kibele A, Behm D, Granacher U (2015) Sex-specific effects of surface instability on drop jump and landing biomechanics. Int J Sports Med 36:75–81

    CAS  PubMed  Google Scholar 

  • Rinalduzzi S, Trompetto C, Marinelli L, Alibardi A, Missori P, Fattapposta F, Pierelli F, Currà A (2015) Balance dysfunction in Parkinson’s disease. Biomed Res Int 2015:434683

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritzmann R, Freyler K, Krause A, Gollhofer A (2016) Bouncing on Mars and the Moon-the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development. J Appl Physiol (Bethesda, Md.: 1985) 121:1187–1195

    Article  Google Scholar 

  • Roelants M, Verschueren SMP, Delecluse C, Levin O, Stijnen V (2006) Whole-body-vibration-induced increase in leg muscle activity during different squat exercises. J Strength Cond Res 20:124

    PubMed  Google Scholar 

  • Schmidt RA (1968) Anticipation and timing in human motor performance. Psychol Bull 70:631

    Article  Google Scholar 

  • Serpell BG, Ball NB, Scarvell JM, Smith PN (2012) A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. J Sports Sci 30:1347–1363

    Article  PubMed  Google Scholar 

  • Silder A, Besier T, Delp SL (2015) Running with a load increases leg stiffness. J Biomech 48:1003–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinkjaer T, Toft E, Andreassen S, Hornemann BC (1988) Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol 60:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Sinkjaer T, Andersen JB, Nielsen JF, Hansen HJ (1999) Soleus long-latency stretch reflexes during walking in healthy and spastic humans. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 110:951–959

    Article  CAS  Google Scholar 

  • Sousa F, Ishikawa M, Vilas-Boas JP, Komi PV (2007) Intensity- and muscle-specific fascicle behavior during human drop jumps. J Appl Physiol (Bethesda, Md.: 1985) 102:382–389

    Article  CAS  Google Scholar 

  • Taube W, Schubert M, Gruber M, Beck S, Faist M, Gollhofer A (2006) Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol (Bethesda, Md.: 1985) 101:420–429

    Article  Google Scholar 

  • Taube W, Leukel C, Schubert M, Gruber M, Rantalainen T, Gollhofer A (2008) Differential modulation of spinal and corticospinal excitability during drop jumps. J Neurophysiol 99:1243–1252

    Article  PubMed  Google Scholar 

  • Taube W, Leukel C, Gollhofer A (2012a) How neurons make us jump: the neural control of stretch-shortening cycle movements. Exerc Sport Sci Rev 40:106–115

    Article  PubMed  Google Scholar 

  • Taube W, Leukel C, Lauber B, Gollhofer A (2012b) The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scand J Med Sci Sports 22:671–683

    Article  CAS  PubMed  Google Scholar 

  • van Dieen JH, Kingma I, van der Bug P (2003) Evidence for a role of antagonistic cocontraction in controlling trunk stiffness during lifting. J Biomech 36:1829–1836

    Article  PubMed  Google Scholar 

  • Viitasalo JT, Salo A, Lahtinen J (1998) Neuromuscular functioning of athletes and non-athletes in the drop jump. Eur J Appl Physiol 78:432–440

    Article  CAS  Google Scholar 

  • Wiley ME, Damiano DL (1998) Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol 40:100–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the German Aerospace Center (DLR, FKZ 50WB1715).

Author information

Authors and Affiliations

Authors

Contributions

MH designed and conducted the experiment, collected and analysed the data and wrote the manuscript. KF designed the experiment, analysed data and edited manuscript. JW collected data, designed and conducted the experiment and analysed data. AB designed the experiment and edited manuscript. RR designed the experiment, analysed data and edited manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Michael Helm.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest related to this study.

Additional information

Communicated by Toshio Moritan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helm, M., Freyler, K., Waldvogel, J. et al. The relationship between leg stiffness, forces and neural control of the leg musculature during the stretch-shortening cycle is dependent on the anticipation of drop height. Eur J Appl Physiol 119, 1981–1999 (2019). https://doi.org/10.1007/s00421-019-04186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04186-7

Keywords

Navigation