Skip to main content

Advertisement

Log in

Immediate effects of transcutaneous electrical nerve stimulation (TENS) administered during resistance exercise on pain intensity and physical performance of healthy subjects: a randomized clinical trial

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Exercise-induced muscle pain is a self-limiting condition which impacts physical activity habits. Transcutaneous electrical nerve stimulation (TENS) promotes pain reduction and functional improvement in different pain conditions. We propose that applying TENS during exercise might reduce pain and improve physical performance. Thus, we aimed to investigate immediate effects of TENS applied during resistance exercise.

Methods

Healthy subjects of both sexes, irregularly active or sedentary were assigned into two groups: active (n = 24) or placebo (n = 22) TENS. The study was conducted over five moments: on day 0, subjects were recruited, on day 1 subjects performed the one-repetition maximum test (1RM); 72 h later, on day 2, 1RM was retested; 48 h later, on day 3, TENS was applied during a functional-resisted exercise protocol for upper limbs (bench press and rowing), with an intensity of 80% of 1RM; and 24 h after, on day 4, subjects were reevaluated. Assessment included pain intensity at rest and with movement, pressure pain thresholds, and muscle fatigue.

Results

TENS did not reduce pain intensity when compared to placebo (p > 0.05). TENS reduce PPT in the latissmus dorsi: p = 0.02 and anterior tibialis: p = 0.04 in immediate reassessment. Immediate effects of TENS were significant for fatigue perception at rest (p = 0.01) and number of maximum repetitions during exercise sets, starting from the 5th set of rowing exercise (p = 0.002).

Conclusion

Our results show that TENS did not reduce pain perception in healthy individuals, but its use induced increased muscle action, contributing to a greater fatigue perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1RM:

1 maximum repetition test

BMI:

Body mass index

CPM:

Conditioned pain modulation

DASH:

Disabilities of the arm, shoulder and hand questionnaire

DBP:

Diastolic blood pressure

DOMS:

Delayed-onset muscle soreness

HR:

Heart rate

IPAQ:

Physical activity questionnaire

ME:

Muscle endurance

MF:

Muscle fatigue

PAR-Q:

Physical activity readiness questionnaire

PI:

Pain intensity

PO:

Power output

PPT:

Pressure pain threshold

ReBEC:

Brazilian registry of clinical trials

RR:

Respiratory rate

SBP:

Systolic blood pressure

SpO2 :

Peripheral oxygen saturation

ST:

Temporal summation

TENS:

Transcutaneous electrical nerve stimulation

TR:

Thermoregulation

NMDA:

N-metil-d-aspartato

NES:

Neuromuscular electrical stimulation

References

  • Al-Nakhli HH et al (2012) The use of thermal infra-red imaging to detect delayed onset muscle soreness. J Vis Exp JoVE. https://doi.org/10.3791/3551

    Article  PubMed  Google Scholar 

  • Amann M et al (2007) Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol 581(Pt 1):389–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Astokorki AHY, Mauger AR (2017) Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance. Eur J Appl Physiol 117(3):483–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benedetti F, Pollo A, Colloca L (2007) Opioid-mediated placebo responses boost pain endurance and physical performance: is it doping in sport competitions? J Neurosci Off J Soc Neurosci 27(44):11934–11939

    Article  CAS  Google Scholar 

  • Bickel CS, Gregory CM, Dean JC (2011) Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 111(10):2399–2407

    Article  Google Scholar 

  • Bjordal JM, Johnson MI, Ljunggreen AE (2003) Transcutaneous electrical nerve stimulation (TENS) can reduce postoperative analgesic consumption. A meta-analysis with assessment of optimal treatment parameters for postoperative pain. Eur J Pain 7(2):181–188

    Article  PubMed  Google Scholar 

  • Blanchfield A, Hardy J, Marcora S (2014) Non-conscious visual cues related to affect and action alter perception of effort and endurance performance. Front Hum Neurosci 8:967

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouhassira D et al (2003) Comparison of the pain suppressive effects of clinical and experimental painful conditioning stimuli. Brain J Neurol 126(Pt 5):1068–1078

    Article  Google Scholar 

  • Boushel R (2010) Muscle metaboreflex control of the circulation during exercise. Acta Physiologica (Oxford, England) 199(4):367–383

    Article  CAS  Google Scholar 

  • Butterfield TA (2010) Eccentric exercise in vivo: strain-induced muscle damage and adaptation in a stable system. Exerc Sport Sci Rev 38(2):51–60

    Article  PubMed  Google Scholar 

  • Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med (Auckland, NZ) 33(2):145–164

    Article  Google Scholar 

  • Connolly DAJ, Sayers SP, Mchugh MP (2003) Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 17(1):197–208

    PubMed  Google Scholar 

  • Corrêa JB et al (2013) Effects of the carrier frequency of interferential current on pain modulation in patients with chronic nonspecific low back pain: a protocol of a randomised controlled trial. BMC Musculoskelet Disord 14:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Dailey DL et al (2013) Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain 154(11):2554–2562

    Article  PubMed  PubMed Central  Google Scholar 

  • Dannecker EA, Koltyn KF (2014) Pain during and within hours after exercise in healthy adults. Sports Med (Auckland, NZ) 44(7):921–942

    Article  Google Scholar 

  • Dannecker EA, Sluka KA (2011) Pressure and activity-related allodynia in delayed-onset muscle pain. Clin J Pain 27(1):42–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Denegar CR, Perrin DH (1992) Effect of transcutaneous electrical nerve stimulation, cold, and a combination treatment on pain, decreased range of motion, and strength loss associated with delayed onset muscle soreness. J Athl Train 27(3):200–206

    PubMed  PubMed Central  CAS  Google Scholar 

  • DeSantana JM et al (2008a) Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep 10(6):492–499

    Article  PubMed  PubMed Central  Google Scholar 

  • DeSantana JM, Santana-Filho VJ, Sluka KA (2008b) Modulation between high- and low-frequency transcutaneous electric nerve stimulation delays the development of analgesic tolerance in arthritic rats. Arch Phys Med Rehabil 89(4):754–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Dworkin RH et al (2009) Interpreting the clinical importance of group differences in chronic pain clinical trials: IMMPACT recommendations. Pain 146(3):238–244

    Article  PubMed  Google Scholar 

  • Eckert NR et al (2017) Testing assumptions in human pain models: psychophysical differences between first and second pain. J Pain Off J Am Pain Soc 18(3):266–273

    Article  Google Scholar 

  • Graven-Nielsen T et al (2002) Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve 26(5):708–712

    Article  PubMed  Google Scholar 

  • Herrero JF, Laird JM, López-García JA (2000) Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog Neurobiol 61(2):169–203

    Article  PubMed  CAS  Google Scholar 

  • Hibbert AW et al (2017) No influence of transcutaneous electrical nerve stimulation on exercise-induced pain and 5-km cycling time-trial performance. Front Physiol 8:7

    Google Scholar 

  • Hopkins J et al (2002) Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train 37(1):25–31

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kahl C, Cleland JA (2005) Visual analogue scale, numeric pain rating scale and the McGill pain Questionnaire: an overview of psychometric properties. Phys Therapy Rev 10(2):123–128

    Article  Google Scholar 

  • Kalra A, Urban MO, Sluka KA (2001) Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther 298(1):257–263

    PubMed  CAS  Google Scholar 

  • Kennedy DS et al (2013) Firing of antagonist small-diameter muscle afferents reduces voluntary activation and torque of elbow flexors. J Physiol 591(14):3591–3604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenny GP, Mcginn R (2017) Restoration of thermoregulation after exercise. J Appl Physiol (Bethesda, Md.: 1985) 122(4):933–944

    Article  Google Scholar 

  • King EW et al (2005) Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors. Pain 115(3):364–373

    Article  PubMed  CAS  Google Scholar 

  • Kosek E, Ekholm J, Hansson P (1999) Pressure pain thresholds in different tissues in one body region. The influence of skin sensitivity in pressure algometry. Scand J Rehabil Med 31(2):89–93

    Article  PubMed  CAS  Google Scholar 

  • Lauver JD, Cayot TE, Scheuermann BW (2016) Influence of bench angle on upper extremity muscular activation during bench press exercise. Eur J Sport Sci 16(3):309–316

    Article  PubMed  Google Scholar 

  • Lavender AP, Nosaka K (2006) Comparison between old and young men for changes in makers of muscle damage following voluntary eccentric exercise of the elbow flexors. Appl Physiol Nutr Metab Physiologie Appliquee Nutrition Et Metabolisme 31(3):218–225

    Article  Google Scholar 

  • Liebano RE et al (2011) An investigation of the development of analgesic tolerance to TENS in humans. Pain 152(2):335–342

    Article  PubMed  Google Scholar 

  • Liebano RE et al (2013) Transcutaneous electrical nerve stimulation and conditioned pain modulation influence the perception of pain in humans: TENS and CPM influence pain in humans. Eur J Pain 17:1539–1546

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lima LV et al (2015) Associating high intensity and modulated frequency of TENS delays analgesic tolerance in rats. Eur J Pain (London, England) 19(3):369–376

    Article  CAS  Google Scholar 

  • Maeda Y et al (2007) Release of GABA and activation of GABA(A) in the spinal cord mediates the effects of TENS in rats. Brain Res 1136(1):43–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mankovsky-Arnold T et al (2013) TENS attenuates repetition-induced summation of activity-related pain following experimentally induced muscle soreness. J Pain Off J Am Pain Soc 14(11):1416–1424

    Article  Google Scholar 

  • Matsudo S et al (2012) Questionário Internacional de atividade física (IPAQ): Estudo de validade e reprodutibilidade no Brasil. Revista Brasileira de Atividade Física Saúde 6(2):5–18

    Google Scholar 

  • Matuszak ME et al (2003) Effect of rest interval length on repeated 1 repetition maximum back squats. J Strength Cond Res 17(4):634–637

    PubMed  Google Scholar 

  • Mauger AR (2014) Factors affecting the regulation of pacing: current perspectives. Open Access J Sports Med 5:209–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran F et al (2011) Hypoalgesia in response to transcutaneous electrical nerve stimulation (TENS) depends on stimulation intensity. J Pain Off J Am Pain Soc 12(8):929–935

    Article  Google Scholar 

  • Nampo FK et al (2016) Effect of low-level phototherapy on delayed onset muscle soreness: a systematic review and meta-analysis. Lasers Med Sci 31(1):165–177

    Article  PubMed  Google Scholar 

  • Nelson ME et al (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116(9):1094–1105

    Article  PubMed  Google Scholar 

  • Nie H et al (2006) Enhanced temporal summation of pressure pain in the trapezius muscle after delayed onset muscle soreness. Exp Brain Res 170(2):182–190

    Article  PubMed  Google Scholar 

  • Orfale AG et al (2005) Translation into Brazilian Portuguese, cultural adaptation and evaluation of the reliability of the Disabilities of the Arm, Shoulder and Hand Questionnaire. Braz J Med Biol Res Revista Brasileira De Pesquisas Medicas E Biologicas 38:2, p. 293–302 n.

    Article  PubMed  CAS  Google Scholar 

  • Osiri M et al (2000) Transcutaneous electrical nerve stimulation for knee osteoarthritis. Cochrane Database Syst Rev 4:CD002823

    Google Scholar 

  • Pantaleão MA et al (2011) Adjusting pulse amplitude during transcutaneous electrical nerve stimulation (TENS) application produces greater hypoalgesia. J Pain Off J Am Pain Soc 12(5):581–590

    Article  Google Scholar 

  • Petrofsky J et al (2011) The contribution of skin blood flow in warming the skin after the application of local heat; the duality of the Pennes heat equation. Med Eng Phys 33(3):325–329

    Article  PubMed  Google Scholar 

  • Pietrosimone BG et al (2009) Immediate effects of transcutaneous electrical nerve stimulation and focal knee joint cooling on quadriceps activation. Med Sci Sports Exerc 41(6):1175–1181

    Article  PubMed  Google Scholar 

  • Platon B et al (2010) High-frequency, high-intensity transcutaneous electrical nerve stimulation as treatment of pain after surgical abortion. Pain 148(1):114–119

    Article  PubMed  CAS  Google Scholar 

  • Pud D, Granovsky Y, Yarnitsky D (2009) The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain 144(1–2):16–19

    Article  PubMed  Google Scholar 

  • Radhakrishnan R, Sluka KA (2003) Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats. Neuropharmacology 45(8):1111–1119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radhakrishnan R et al (2003) Spinal 5-HT(2) and 5-HT(3) receptors mediate low, but not high, frequency TENS-induced antihyperalgesia in rats. Pain 105(1–2):205–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahnama N, Rahmani-Nia F, Ebrahim K (2005) The isolated and combined effects of selected physical activity and ibuprofen on delayed-onset muscle soreness. J Sports Sci 23(8):843–850

    Article  PubMed  CAS  Google Scholar 

  • Rakel B, Frantz R (2003) Effectiveness of transcutaneous electrical nerve stimulation on postoperative pain with movement. J Pain Off J Am Pain Soc 4(8):455–464

    Article  Google Scholar 

  • Rakel B et al (2010) A new transient sham TENS device allows for investigator blinding while delivering a true placebo treatment. J Pain Off J Am Pain Soc 11(3):230–238

    Article  Google Scholar 

  • Ritti-Dias RM et al (2011) Influence of previous experience on resistance training on reliability of one-repetition maximum test. J Strength Cond Res 25(5):1418–1422

    Article  PubMed  Google Scholar 

  • Röhrig B et al (2010) Sample size calculation in clinical trials. Deutsches Ärzteblatt Int 107(31–32):552–556 (ago)

    Google Scholar 

  • Rokugo T, Takeuchi T, Ito H (2002) A histochemical study of substance P in the rat spinal cord: effect of transcutaneous electrical nerve stimulation. J Nippon Med Sch Nippon Ika Daigaku Zasshi v 69(5):428–433

    Article  CAS  Google Scholar 

  • Sandberg ML, Sandberg MK, Dahl J (2007) Blood flow changes in the trapezius muscle and overlying skin following transcutaneous electrical nerve stimulation. Phys Therapy 87(8):1047–1055

    Article  Google Scholar 

  • Sato KL et al (2012) Increasing intensity of TENS prevents analgesic tolerance in rats. J Pain Off J Am Pain Soc 13(9):884–890

    Article  Google Scholar 

  • Sayers SP, Dannecker EA (2004) How to prevent delayed onset muscle soreness (DOMS) after eccentric exercise. Int SportMed J 5(2):84–97

    Google Scholar 

  • Schlader ZJ et al (2011) Skin temperature as a thermal controller of exercise intensity. Eur J Appl Physiol 111(8):1631–1639

    Article  PubMed  Google Scholar 

  • Sluka KA et al (1998) Treatment with either high or low frequency TENS reduces the secondary hyperalgesia observed after injection of kaolin and carrageenan into the knee joint. Pain 77(1):97–102

    Article  PubMed  CAS  Google Scholar 

  • Sluka KA et al (1999) Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharmacol Exp Ther 289(2):840–846

    PubMed  CAS  Google Scholar 

  • Sluka KA, Vance CGT, Lisi TL (2005) High-frequency, but not low-frequency, transcutaneous electrical nerve stimulation reduces aspartate and glutamate release in the spinal cord dorsal horn. J Neurochem 95(6):1794–1801

    Article  PubMed  CAS  Google Scholar 

  • Sowman PF et al (2011) Diffuse noxious inhibitory control evoked by tonic craniofacial pain in humans. Eur J Pain 15(2):139–145

    Article  PubMed  CAS  Google Scholar 

  • Strafella AP, Ko JH, Monchi O (2006) Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. NeuroImage 31(4):1666–1672

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas S, Reading J, Shephard RJ (1992) Revision of the physical activity readiness questionnaire (PAR-Q). Can J Sport Sci Journal Canadien Des Sciences Du Sport v 17(4):338–345

    CAS  Google Scholar 

  • Tomasi F et al (2015) Transcutaneous electrical nerve stimulation improves exercise tolerance in healthy subjects. Int J Sports Med 36(08):661–665

    Article  PubMed  CAS  Google Scholar 

  • Tourville TW, Connolly DAJ, Reed BV (2006) Effects of sensory-level high-volt pulsed electrical current on delayed-onset muscle soreness. J Sports Sci 24(9):941–949

    Article  PubMed  Google Scholar 

  • Tous-Fajardo J et al (2016) W5″ test: a simple method for measuring mean power output in the bench press exercise. Eur J Sport Sci 16(8):940–947 n.

    Article  PubMed  Google Scholar 

  • Trebs AA, Brandenburg JP, Pitney WA (2010) An electromyography analysis of 3 muscles surrounding the shoulder joint during the performance of a chest press exercise at several angles. J Strength Cond Res 24(7):1925–1930

    Article  PubMed  Google Scholar 

  • Tucker R (2009) The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med 43(6):392–400

    Article  PubMed  CAS  Google Scholar 

  • Vieira PJC et al (2012) Effect of transcutaneous electrical nerve stimulation on muscle metaboreflex in healthy young and older subjects. Eur J Appl Physiol 112(4):1327–1334

    Article  PubMed  Google Scholar 

  • Wager TD, Scott DJ, Zubieta J-K (2007) Placebo effects on human -opioid activity during pain. Proc Natl Acad Sci 104(26):11056–11061

    Article  PubMed  CAS  Google Scholar 

  • Willis WD (2001) Role of neurotransmitters in sensitization of pain responses. Ann NY Acad Sci 933:142–156

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K et al (2012) Central projection of pain arising from delayed onset muscle soreness (DOMS) in human subjects. PloS One 7(10):e47230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zubieta J-K et al (2005) Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci Off J Soc Neurosci 25(34):7754–7762

    Article  CAS  Google Scholar 

  • Butera, KA et al (2018) Prolonged reduction in shoulder strength after transcutaneous electrical nerve stimulation treatment of exercise-induced acute muscle pain. Pain Pract. https://doi.org/10.1111/papr.12690

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MAM, TABP, AGRN and MEDSG conceived and designed the study. LMT, BTQL, LMSC conducted the experiment. MAM and JMDS performed data analysis. MAM wrote the manuscript. LVL and JMDS reviewed the manuscript. All authors agree with the final version of the manuscript.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

MAM, TABP, AGRN and MEDSG conceived and designed the study. LMT, BTQL, LMSC conducted the experiment. MAM and JMDS performed data analysis. MAM wrote the manuscript. LVL and JMDS reviewed the manuscript. All authors agree with the final version of the manuscript.

Corresponding author

Correspondence to Josimari M. DeSantana PhD.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Communicated by Bénédicte Schepens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, M.A., Pereira, T.A.B., Tavares, L.M. et al. Immediate effects of transcutaneous electrical nerve stimulation (TENS) administered during resistance exercise on pain intensity and physical performance of healthy subjects: a randomized clinical trial. Eur J Appl Physiol 118, 1941–1958 (2018). https://doi.org/10.1007/s00421-018-3919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3919-7

Keywords

Navigation