Skip to main content
Log in

Comparison of capillary and venous blood in the analysis of concentration and function of leucocyte sub-populations

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Compare capillary and venous blood in the analysis of concentration and function of leucocyte sub-populations. This study hypothesised that capillary samples may be used in a site-specific manner as an alternative source of blood samples for assays of leucocyte concentration and neutrophilic phagocytic function and reactive oxygen species (ROS) production, allowing acquisition of multiple samples to better monitor transient but significant post-exercise immune modulation.

Methods

Resting blood samples were simultaneously obtained from vein, finger and earlobe of healthy subjects (n = 10, age: 25.1 ± 3.1 years). Leucocyte concentrations were measured using a five-part differential haematological analyser. Leucocyte sub-populations (CD3, CD4, CD8, CD19, CD56, CD14) and granulocytic functional-related (CD11b, CD18, CD16b, CD66b) surface antigen markers, neutrophil phagocytosis (FITC-labelled Escherichia coli) and stimulated ROS production (DHR) were quantified utilizing flow cytometry. A MANOVA (α < 0.05 significance) analysed the effects of the different sampling sites in the concentrations of leucocyte populations, their surface antigen expression and granulocytic functions.

Results

Leucocyte concentration and neutrophilic ROS production yielded non-significant differences between sampling sites. Expression of granulocytic surface antigens was increased in both capillary sites compared to venous site (p = 0.008), particularly for adhesion markers CD11b/CD18. The percentage of neutrophils performing phagocytosis was higher in venous samples compared to finger (p = 0.025). Increased number of E. coli ingested was observed in venous sample compared to finger (p = 0.001) and to earlobe (p = 0.006).

Conclusion

Whilst attention must be paid for varying neutrophilic surface antigen expression and further studies are needed to establish appropriate reference ranges, this study supports the use of capillary blood samples in a site-specific manner to enhance sampling capabilities field-based research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

APC-Cy™7:

APC-cyanine tandem fluorochrome

APC-H7:

APC-cyanine H7 tandem fluorochrome

CGRP:

Calcitonin-gene-related peptide

CD:

Cluster of Differentiation

DHR:

Dihydrorhodamine

E. coli :

Escherichia coli

EDTA:

Ethylenediaminetetraacetic acid

FITC:

Fluorescein isothiocyanate

fMLP:

Formyl-methionyl-leucyl-phenylalanine

ICAM1:

Intercellular adhesion molecule 1

LPS:

Lipopolysaccharide

MCH:

Mean corpuscular haemoglobin

MCHC:

Mean corpuscular haemoglobin concentration

MCV:

Mean corpuscular volume

MANOVA:

Multivariate analysis of variance

NA:

Neutrophil antigen

PE:

R-phycoerythrin

PE-Cy7:

PE-cyanine tandem fluorochrome

PerCP-Cy™5.5:

PerCP-cyanine tandem fluorochrome

PMA:

Phorbol 12-myristate 13-acetate

PBS:

Phosphate-buffered saline

PNC:

Platelet-neutrophil complexes

ROS:

Reactive oxygen species

RDW:

Red cell distribution width

References

  • Anderson DC (1995) The role of β2 integrins and intracellular adhesion molecule type 1 in inflammation. In: Granger DN, Schmid-Schonbein GW (eds) Physiology and pathophysiology of leukocyte adhesion. Oxford University Press, New York, pp 3–42

    Google Scholar 

  • Anderson SI, Hotchin NA, Nash GB (2000) Role of the cytoskeleton in rapid activation of CD11b/CD18 function and its subsequent downregulation in neutrophils. J Cell Sci 113:2737–2745

    CAS  PubMed  Google Scholar 

  • Bakhmetyev BA, Agafonova AV (2002) The relationships between the phagocytic activities of arterial, capillary, and venous blood leukocytes in normal and pathological states. Dokl Biol Sci 384:185–187. doi:10.1023/A:1016044819402

    Article  CAS  PubMed  Google Scholar 

  • Baptista-Silva JCC, Dias AL, Cricenti SV, Burihan E (2003) Anatomy of the basilica vein in the arm and its importance for surgery. Braz J Morphol Sci 20:171–175

    Google Scholar 

  • Beneke R, Alkhatib A (2015) High cycling cadence reduces carbohydrate oxidation at given low intensity metabolic rate. Biol Sport 32:27–33. doi:10.5604/20831862.1126325

    Article  CAS  PubMed  Google Scholar 

  • Bjorkstein B (1973) The NBT test using venous and capillary blood. Scand J Haematol 11:270–274. doi:10.1111/j.1600-0609.1973.tb00129.x

    Article  Google Scholar 

  • Braverman IM (2000) The cutaneous microcirculation. J Invest Dermatol Symp P 5:3–9. doi:10.1046/j.1087-0024.2000.00010.x

    Article  CAS  Google Scholar 

  • Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, O’Mahony D, Lord JM (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886

    CAS  PubMed  Google Scholar 

  • Chien S, Sung KL, Shmid-Schonbien GW, Skalak R, Schmalzer EA, Usami S (1987) Rheology of leucocytes. Ann NY Acad Sci 516:333–347. doi:10.1111/j.1749-6632.1987.tb33054.x

    Article  CAS  PubMed  Google Scholar 

  • Daae LN, Halvorsen S, Mathisen PM, Mironska K (1988) A comparison between haematological parameters in ‘capillary’ and venous blood from healthy adults. Scand J Clin Lab Invest 48:723–726. doi:10.1080/00365518809085796

    CAS  PubMed  Google Scholar 

  • Elghetany MT (2002) Surface antigen changes during normal neutrophilic development: a critical review. Blood Cell Mol Dis 28:260–274. doi:10.1006/bcmd.2002.0513

    Article  Google Scholar 

  • Erbel R, Eggebrecht H (2006) Aortic dimensions and the risk of dissection. Heart 92:137–142. doi:10.1136/hrt.2004.055111

    Article  PubMed  PubMed Central  Google Scholar 

  • Field A (2009) Discovering statistics using SPSS, 3rd edn. Sage Publications, Thousand Oaks

    Google Scholar 

  • Fukuda S, Yasu T, Predescu DN, Schmid-Schonbien GW (2000) Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ Res 86:e13–e18. doi:10.1161/01.RES.86.1.e13

    Article  CAS  PubMed  Google Scholar 

  • Futosi K, Fodor S, Mócsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:638–650. doi:10.1016/j.intimp.2013.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey RJ, Whyte G, McCarthy J, Nevill A, Head A (2004) The validity of capillary blood sampling in the determination of human growth hormone concentration during exercise in men. Brit J Sports Med 38:e27–e31. doi:10.1136/bjsm.2003.008714

    Article  CAS  Google Scholar 

  • Gordon DL, Rice JL, McDonald PJ (1989) Regulation of human neutrophil type 3 complement receptor (iC3b receptor) expression during phagocytosis of Staphylococcus aureus and Escherichia coli. Immunology 67:460–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groemping Y, Rittinger K (2005) Activation and assembly of NADPH oxidase: a structural perspective. Biochem J 386:401–416. doi:10.1042/BJ20041835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartung HP, Toyka KV (1989) Substance P, the immune system and inflammation. Int Rev Immunol 4:229–249. doi:10.3109/08830188909054420

    Article  CAS  PubMed  Google Scholar 

  • Hoang AN, Jones CN, Dimisko L, Hamza B, Martel J, Kojic N, Irimia D (2013) Measuring neutrophil speed and directionality during chemotaxis, directly from a droplet of whole blood. Technology (Singap World Sci) 1:49–66. doi:10.1142/s2339547813500040

    Google Scholar 

  • Hofman P, Piche M, Farahi Far D, Le’Negrate G, Selva E, Landraud L, Alliana Schmid A, Boquet P, Rossi B (2000) Increased Escherichia coli phagocytosis in neutrophils that have transmigrated across a cultured intestinal epithelium. Infect Immun 68:449–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollis VS, Holloway JA, Harris S, Spencer D, van Berkel C, Morgan H (2012) Comparison of venous and capillary differential leukocyte counts using a standard hematology analyzer and a novel microfluidic impedance cytometer. PLoS One 7:20–28. doi:10.1371/journal.pone.0043702

    Article  Google Scholar 

  • Kobayashi SD, Deleo FR (2009) Towards a comprehensive understanding of the role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med 1:309–333. doi:10.1002/wsbm.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuijpers TW, Tool ATJ, van der Schoot CE, Ginsel LA, Onderwater JJM, Roos D, Verhoeven AJ (1991) Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation. Blood 78:1105–1111

    CAS  PubMed  Google Scholar 

  • Lee WL, Harrison RE, Grinstein S (2003) Phagocytosis by neutrophils. Microbes Infect 5:1299–1306. doi:10.1016/j.micinf.2003.09.014

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Karlin A, Loike JD, Silverstein SC (2004) Determination of the critical concentration of neutrophils required to block bacterial growth in tissues. J Exp Med 200:613–622. doi:10.1084/jem.20040725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund-Johansen F, Terstappen LW (1993) Differential surface expression of cell adhesion molecules during granulocyte maturation. J Leukoc Biol 54:47–55

    CAS  PubMed  Google Scholar 

  • MacLennan CA, van Oosterhout JJ, White SA, Drayson MT, Zijlstra EE, Molyneux ME (2007) Finger-prick blood samples can be used interchangeably with venous samples for CD4 cell counting indicating their potential for use in CD4 rapid tests. AIDS 21:1643–1645. doi:10.1097/QAD.0b013e32823bcb03

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell MJ, Lin KS, King MR (2014) Fluid shear stress increases neutrophil activation via platelet-activating factor. Biophys J 106:2243–2253. doi:10.1016/j.bpj.2014.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobberley-Schuman PS, Weiss AA (2005) Influence of CR3 (CD11b/CD18) expression on phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun 73:7317–7323. doi:10.1128/iai.73.11.7317-7323.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauseef WM (2014) Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim Biophys Acta 1840:757–767. doi:10.1016/j.bbagen.2013.04.040

    Article  CAS  PubMed  Google Scholar 

  • Nieman DC (1997) Immune response to heavy exertion. J Appl Physiol 82:1385–1394

    CAS  PubMed  Google Scholar 

  • Nishimura H, Gogami A, Miyagawa Y, Nanbo A, Murakami Y, Baba T, Nagasawa S (2001) Bactericidal/permeability-increasing protein promotes complement activation for neutrophil-mediated phagocytosis on bacterial surface. Immunology 103:519–525. doi:10.1046/j.1365-2567.2001.01263.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oertel H (2010) Biofluid Mechanics. In: Oertel H (ed) Prandtl—Essentials of fluid mechanics. Springer, New York, NY, pp 751–752

    Google Scholar 

  • Papaioannou TG, Stefanadis C (2005) Vascular Wall Shear Stress: basic principles and methods. Hellenic J Cardiol 46:9–15

    PubMed  Google Scholar 

  • Peiser L, Gordon S (2001) Phagocytosis: enhancement. Encyclopaedia of life sciences—eLS. Wiley, New York

    Google Scholar 

  • Peters MJ, Heyderman RS, Hatch DJ, Klein NJ (1997) Investigation of platelet–neutrophil interactions in whole blood by flow cytometry. J Immunol Methods 209:125–135. doi:10.1016/S0022-1759(97)00139-7

    Article  CAS  PubMed  Google Scholar 

  • Peters MJ, Dixon G, Kotowicz KT, Hatch DJ, Heyderman RS, Klein NJ (1999) Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. Brit J Haematol 106:391–399. doi:10.1046/j.1365-2141.1999.01553

    Article  CAS  Google Scholar 

  • Ponampalam R, Chong SMCF, Tan SC (2012) Comparison of full blood count parameters using capillary and venous samples in patients presenting to the emergency department. ISRN Emerg Med. doi:10.5402/2012/508649

    Google Scholar 

  • Pyke KE, Tschakovsky ME (2005) The relationship between shear stress and flow-mediated dilatation: implications for the assessment of endothelial function. J Physiol 568:357–369. doi:10.1113/jphysiol.2005.089755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao LV, Moiles D, Snyder M (2011) Finger-stick complete blood counts—comparison between venous and capillary blood. Point Care J Near-Patient Test Technol 10:120–125. doi:10.1097/POC.0b013e31822814e0

    Article  Google Scholar 

  • Richardson MP, Ayliffe MJ, Helbert M, Davies EG (1998) A simple flow cytometry assay using dihydrorhodamine for the measurement of the neutrophil respiratory burst in whole blood: comparison with the quantitative nitroblue tetrazolium test. J Immunol Methods 219:187–193. doi:10.1016/S0022-1759(98)00136-7

    Article  CAS  PubMed  Google Scholar 

  • Robinson JP, Carter WO, Narayanan P (1997) Functional assays by flow cytometry. In: Rose NR, de Marcario E, Folds JD, Lane HC, Nakumura R (eds) Manual of clinical laboratory immunology. ASM Press, Washington, DC, pp 245–254

    Google Scholar 

  • Schalk E, Heim MU, Koenigsmann M, Jentsch-Ullrich K (2007) Use of capillary blood count parameters in adults. Vox Sang 93:348–353. doi:10.1111/j.1423-0410.2007.00978.x

    CAS  PubMed  Google Scholar 

  • Schmidt T, Zundorf J, Gruger T, Brandenburg K, Reiners AL, Zinserling J, Schnitzler N (2012) CD66b overexpression and homotypic aggregation of human peripheral blood neutrophils after activation by a gram-positive stimulus. J Leukoc Biol 91:791–802. doi:10.1189/jlb.0911483

    Article  CAS  PubMed  Google Scholar 

  • Schommer K, Moritz Hammer M, Hotz L, Menold E, Bärtsch P, Berger MM (2012) Exercise intensity typical of mountain climbing does not exacerbate acute mountain sickness in normobaric hypoxia. J Appl Physiol 113:1068–1074. doi:10.1152/japplphysiol.00329.2012

    Article  PubMed  Google Scholar 

  • Sheikh S, Nash GB (1996) Continuous activation and deactivation of integrin CD11b/CD18 during de novo expression enables rolling neutrophils to immobilize on platelets. Blood 87:5040–5050

    CAS  PubMed  Google Scholar 

  • Shin HY, Simon SI, Schmid-Schonbein GW (2008) Fluid shear-induced activation and cleavage of CD18 during pseudopod retraction by human neutrophils. J Cell Physiol 214:528–536. doi:10.1002/jcp.21235

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MJ, Baskurt OK, Meiselman HJ, Marshall-Gradisnik SM (2011) A comparison of capillary and venous blood sampling methods for the use in haemorheology studies. Clin Hemorheol Microcirc 47:111–119. doi:10.3233/CH-2010-1372

    PubMed  Google Scholar 

  • Sitoe N, Luecke E, Tembe N, Matavele R, Cumbane V, Macassa E, Vaz P, Sheppard H, Jani IV (2011) Absolute and percent CD4+ T-cell enumeration by flow cytometry using capillary blood. J Immunol Methods 372:1–6. doi:10.1016/j.jim.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  • Stucker M, Reuther T, Hoffmann K, Aicher B, Altmeyer P (1999) The effect of the base on the kinetics of action of the capsaicinoid nonivamide: evaluation with a hyperemic test. Skin Pharmacol Appl 12:289–298. doi:10.1159/000066255

    Article  CAS  Google Scholar 

  • Sun J, Ramnath RD, Bhatia M (2007) Neuropeptide substance P upregulates chemokine and chemokine receptor expression in primary mouse neutrophils. Am J Physiol Cell Physiol 293:c696–c704. doi:10.1152/ajpcell.00060.2007

    Article  CAS  PubMed  Google Scholar 

  • Sundd P, Pospieszalska MK, Ley K (2013) Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings. Mol Immunol 55:59–69. doi:10.1016/j.molimm.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick BJ, Fidell LS (2013) Using multivariate statistics, 6th international edn. Pearson, Boston

    Google Scholar 

  • Wang Y, Wua J, Newtonc R, Bahaiea NS, Longa C, Walcheck B (2013) ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils. BBA Mol Cell Res 1833:680–685. doi:10.1016/j.bbamcr.2012.11.027

    CAS  Google Scholar 

  • Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    Article  CAS  PubMed  Google Scholar 

  • Wright SD, Jong MTC (1986) Adhesion-promoting receptors on human macrophages recognize E. coli by binding to lipopolysaccharide. J Exp Med 164:1876–1888. doi:10.1084/jem.164.6.1876

    Article  CAS  PubMed  Google Scholar 

  • Yang ZW, Yang SH, Chen L, Qu J, Zhu J, Tang Z (2001) Comparison of blood counts in venous, fingertip and arterial blood and their measurement variation. Clin Lab Haematol 23:155–159. doi:10.1046/j.1365-2257.2001.00388.x

    Article  CAS  PubMed  Google Scholar 

  • Yap B, Kamm RD (2005) Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels. J Appl Physiol 99:2323–2330. doi:10.1152/japplphysiol.00503.2005

    Article  CAS  PubMed  Google Scholar 

  • Zavorsky GS, Lands LC, Schneider W, Carli F (2005) Comparison of fingertip to arterial blood samples at rest and during exercise. Clin J Sport Med 15:263–270

    Article  PubMed  Google Scholar 

  • Zimmerman BJ, Anderson DC, Granger DN (1992) Neuropeptides promote neutrophil adherence to endothelial cell monolayers. Am J Physiol 263:G678–G682

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Evelyne Rathbone for the consultation provided towards the statistical analysis of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa F. D. Canetti.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical standards

Any details that could disclose the identity of subjects were omitted. All procedures in this study were previously approved by the Bond University’s Human Research Ethics Committee (RO1721) and have been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canetti, E.F.D., Keane, J., McLellan, C.P. et al. Comparison of capillary and venous blood in the analysis of concentration and function of leucocyte sub-populations. Eur J Appl Physiol 116, 1583–1593 (2016). https://doi.org/10.1007/s00421-016-3413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3413-z

Keywords

Navigation