Skip to main content
Log in

Intramuscular phosphagen status and the relationship to muscle performance across the age spectrum

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To examine age-related differences in intramuscular concentrations of adenosine triphosphate (ATP), free creatine (FCr), phosphocreatine (PCr) and total creatine (TCr) and if these differences were related to muscle performance.

Methods

Forty-two healthy, non-sedentary, males between 20 and 76 years provided muscle samples to determine [ATP], [FCr], [PCr], and [TCr]. Maximal strength and endurance were assessed and correlated with intramuscular variables.

Results

Intramuscular [ATP] decreased by 13.5 % (p = 0.013) in the older cohort (18.0 ± 0.6 mmol/kg dry wt) vs. the young cohort (20.8 ± 0.9 mmol/kg dry wt) and was significantly correlated to age (r = −0.38, p = 0.008). No other differences were observed between age groups for intramuscular [PCr], [FCr], [TCr], or [PCr]:[TCr] (p > 0.05). The older cohort consumed significantly less (p < 0.05) dietary protein when compared to the young cohort. Bivariate correlations were found for intramuscular [ATP] and lower body 1RM (r = 0.24, p = 0.066), leg press volume and free creatine (r = 0.325, p = 0.036) and leg press repetitions and free creatine (r = 0.373, p = 0.015). Partial correlations controlling for age eliminated the relationship between [ATP] and 1RM while intramuscular free creatine and leg press repetitions remained significant (p < 0.05) and leg press volume approached significance (p = 0.095).

Conclusion

These results expand upon previous observations indicative of age-related reductions in intramuscular [ATP] and dietary protein intake. The lack of change in other intramuscular PCr system markers are suggestive of dysfunctions at the mitochondrial level while the impact of neuromuscular changes, lean mass cross-sectional area and differences in physical activity are also important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

PCr:

Phosphocreatine

FCr:

Free creatine

Cr:

Creatine

TCr:

Total creatine

mmol (mM):

Millimolar

kg dry wt:

Kilograms of dry weight of skeletal muscle

[]:

Concentration

1RM:

One-repetition maximum

mtDNA:

Mitochondrial DNA

mRNA:

Messenger RNA

ACSM:

American College of Sports Medicine

IRB:

Institutional Review Board

KHCO3:

Potassium bicarbonate

Nm:

Nanometer

NADP:

Nicotinamide adenine dinucleotide phosphate

μl:

Microliter

ADP:

Adenosine diphosphate

CK:

Creatine kinase

U/ml:

Units per milliliter

μM:

Micromolar

NADH:

Nicotinamide adenine dinucleotide

ANOVA:

Analysis of variance

GAMT:

Guanidinoacetate N-methyltransferase

POLG:

Polymerase gamma

References

  • Avin KG, Law LA (2011) Age-related differences in muscle fatigue vary by contraction type: a meta-analysis. Phys Ther 91(8):1153–1165. doi:10.2522/ptj.20100333

    Article  PubMed  PubMed Central  Google Scholar 

  • Baechle T, Earle R (2002) Essentials of strength training and conditioning. Hum Kinet, Champaign

    Google Scholar 

  • Brose A, Parise G, Tarnopolsky MA (2003) Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol A Biol Sci Med Sci 58(1):11–19

    Article  PubMed  Google Scholar 

  • Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40(5):1325–1331. doi:10.1007/s00726-011-0853-y

    Article  PubMed  CAS  Google Scholar 

  • Callahan DM, Foulis SA, Kent-Braun JA (2009) Age-related fatigue resistance in the knee extensor muscles is specific to contraction mode. Muscle Nerve 39(5):692–702. doi:10.1002/mus.21278

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell WW, Barton ML Jr, Cyr-Campbell D, Davey SL, Beard JL, Parise G, Evans WJ (1999) Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. Am J Clin Nutr 70(6):1032–1039

    PubMed  CAS  Google Scholar 

  • Campbell WW, Trappe TA, Wolfe RR, Evans WJ (2001) The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J Gerontol A Biol Sci Med Sci 56(6):M373–M380

    Article  PubMed  CAS  Google Scholar 

  • Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526(Pt 1):203–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalbo VJ, Roberts MD, Lockwood CM, Tucker PS, Kreider RB, Kerksick CM (2009) The effects of age on skeletal muscle and the phosphocreatine energy system: can creatine supplementation help older adults. Dyn Med 8:6. doi:10.1186/1476-5918-8-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis JW, Ross PD, Preston SD, Nevitt MC, Wasnich RD (1998) Strength, physical activity, and body mass index: relationship to performance-based measures and activities of daily living among older Japanese women in Hawaii. J Am Geriatr Soc 46(3):274–279

    Article  PubMed  CAS  Google Scholar 

  • Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Biran M, Deschodt-Arsac V, Miraux S, Thiaudiere E, Pasdois P, Detaille D, Franconi JM, Babot M, Trezeguet V, Arsac L, Diolez P (2014) Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 13(1):39–48. doi:10.1111/acel.12147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greenhaff PL (2001) The creatine-phosphocreatine system: there’s more than one song in its repertoire. J Physiol 537(Pt 3):657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris RC, Hultman E, Nordesjo LO (1974) Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33(2):109–120

    Article  PubMed  CAS  Google Scholar 

  • Hennessey JV, Chromiak JA, Della Ventura S, Guertin J, MacLean DB (1997) Increase in percutaneous muscle biopsy yield with a suction-enhancement technique. J Appl Physiol 82(6):1739–1742

    PubMed  CAS  Google Scholar 

  • Jackson A, Pollock M (1985) Practical assessment of body composition. Phys Sportsmed 13:76–90

    Google Scholar 

  • Koopman R, van Loon LJ (2009) Aging, exercise, and muscle protein metabolism. J Appl Physiol (Bethesda, Md: 1985) 106(6):2040–2048. doi:10.1152/japplphysiol.91551.2008

  • Ljubicic V, Hood DA (2009) Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle. Aging Cell 8(4):394–404. doi:10.1111/j.1474-9726.2009.00483.x

    Article  PubMed  CAS  Google Scholar 

  • Marzani B, Felzani G, Bellomo RG, Vecchiet J, Marzatico F (2005) Human muscle aging: ROS-mediated alterations in rectus abdominis and vastus lateralis muscles. Exp Gerontol 40(12):959–965. doi:10.1016/j.exger.2005.08.010

    Article  PubMed  CAS  Google Scholar 

  • Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61(6):534–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Moller P, Brandt R (1982) The effect of physical training in elderly subjects with special reference to energy-rich phosphagens and myoglobin in leg skeletal muscle. Clin Physiol 2(4):307–314

    Article  PubMed  CAS  Google Scholar 

  • Moller P, Bergstrom J, Furst P, Hellstrom K (1980) Effect of aging on energy-rich phosphagens in human skeletal muscles. Clin Sci (Lond) 58(6):553–555

    Article  CAS  Google Scholar 

  • Nair KS (2005) Aging muscle. Am J Clin Nutr 81(5):953–963. doi:81/5/953 [pii]

  • Paddon-Jones D, Leidy H (2014) Dietary protein and muscle in older persons. Curr Opin Clin Nutr Metab Care 17(1):5–11. doi:10.1097/MCO.0000000000000011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87(5):1562S–1566S. doi:87/5/1562S [pii]

  • Parise G, Brose AN, Tarnopolsky MA (2005) Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Exp Gerontol 40(3):173–180. doi:10.1016/j.exger.2004.09.002

    Article  PubMed  CAS  Google Scholar 

  • Paterson DH, Jones GR, Rice CL (2007) Aging and physical activity data on which to base recommendations for exercise in older adults. Appl Physiol Nutr Metab 32(Suppl 2F):S75–S171. doi:10.1139/H07-165

    Article  PubMed  Google Scholar 

  • Russ DW, Lanza IR (2011) The impact of old age on skeletal muscle energetics: supply and demand. Curr Aging Sci 4(3):234–247

    Article  PubMed  CAS  Google Scholar 

  • Schlenska GK, Kleine TO (1980) Disorganization of glycolytic and gluconeogenic pathways in skeletal muscle of aged persons studied by histometric and enzymatic methods. Mech Ageing Dev 13(2):143–154

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Marescau B, Boehm EA, Renema WK, Peco R, Das A, Steinfeld R, Chan S, Wallis J, Davidoff M, Ullrich K, Waldschutz R, Heerschap A, De Deyn PP, Neubauer S, Isbrandt D (2004) Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet 13(9):905–921. doi:10.1093/hmg/ddh112

    Article  PubMed  CAS  Google Scholar 

  • Sewell DA, Robinson TM, Greenhaff PL (2008) Creatine supplementation does not affect human skeletal muscle glycogen content in the absence of prior exercise. J Appl Physiol (Bethesda, Md: 1985) 104(2):508–512. doi:10.1152/japplphysiol.00787.2007

  • Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM, Nair KS (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52(8):1888–1896

    Article  PubMed  CAS  Google Scholar 

  • Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102(15):5618–5623. doi:10.1073/pnas.0501559102

  • Tarnopolsky MA, Parise G (1999) Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 22(9):1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Pearce E, Smith K, Lach B (2011) Suction-modified Bergstrom muscle biopsy technique: experience with 13,500 procedures. Muscle Nerve 43(5):717–725. doi:10.1002/mus.21945

    Article  PubMed  Google Scholar 

  • Villaca DS, Lerario MC, dal Corso S, Napolis L, de Albuquerque AL, Lazaretti-Castro M, Sachs A, Nery LE, Neder JA (2008) Clinical value of anthropometric estimates of leg lean volume in nutritionally depleted and non-depleted patients with chronic obstructive pulmonary disease. Br J Nutr 100(2):380–386. doi:10.1017/S0007114507886399

  • Wagatsuma A, Sakuma K (2012) Molecular mechanisms for age-associated mitochondrial deficiency in skeletal muscle. J Aging Res 2012:768304. doi:10.1155/2012/768304

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213

    PubMed  CAS  Google Scholar 

  • Zykovich A, Hubbard A, Flynn JM, Tarnopolsky M, Fraga MF, Kerksick C, Ogborn D, MacNeil L, Mooney SD, Melov S (2014) Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell 13(2):360–366

Download references

Acknowledgments

The authors are indebted to Dr. Justin Crane and Dr. Mark Tarnopolsky for their collaborative spirit and graciousness in completing the intramuscular phosphagen assays. We thank the subjects that participated in this study and Dr. Jerry Mayhew at Truman State University (Kirksville, MO) for his insight on statistical approaches. The National Strength and Conditioning Foundation provided funds for this project through a Doctoral Research Grant to M.D.R as well as a Young Investigator Grant to C.M.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad M. Kerksick.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerksick, C.M., Roberts, M.D., Dalbo, V.J. et al. Intramuscular phosphagen status and the relationship to muscle performance across the age spectrum. Eur J Appl Physiol 116, 115–127 (2016). https://doi.org/10.1007/s00421-015-3246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3246-1

Keywords

Navigation