Skip to main content
Log in

Localisation of lymphatic vessels and vascular endothelial growth factors-C and -D in human and mouse skeletal muscle with immunohistochemistry

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The present study was aimed to localise lymphatic vessels and their growth factors in human and mouse skeletal muscle with immunohistochemistry and specific antibodies (VEGFR-3, LYVE-1, VEGF-C and VEGF-D). The largest lymphatic vessels were found in perimysial connective tissue next to the arteries and veins, as has been shown earlier with electron microscopy. As a new finding, we also found small LYVE-1 positive vessels in the capillary bed between muscle fibres. These vessels were located next to CD31 positive blood capillaries and were of the same size, but fewer in number. In addition, we described the localisation of the two main lymphangiogenic growth factor proteins, vascular endothelial growth factor-C and -D. Both proteins were expressed in skeletal muscle at mRNA and protein levels. VEGF-D was located under the sarcolemma in some of the muscle fibres, in the endothelia of larger blood vessels and in fibroblasts. VEGF-C protein was localised to the nerves and muscle spindles, to fibroblasts and surrounding connective tissue, but was not found in muscle fibres or endothelial cells. Our results are the first to suggest the presence of lymphatic capillaries throughout the skeletal muscle, and to present the localisation of VEGF-C and -D in the muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553

    Article  PubMed  CAS  Google Scholar 

  • Aukland K, Reed R (1993) Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73:1–78

    PubMed  CAS  Google Scholar 

  • Bach C, Lewis GP (1973) Lymph flow and lymph protein concentration in the skin and muscle of the rabbit hind limb. J Physiol (Lond) 235:477–492

    CAS  Google Scholar 

  • Banerji S, Ni J, Wang S-X, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801

    Article  PubMed  CAS  Google Scholar 

  • Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvet R, Amann G, Kriehuber E, Diem K, Weninger W, Tchachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394

    PubMed  CAS  Google Scholar 

  • Byzova TV, Goldman CK, Jankau J, Chen J, Cabrera G, Achen MG, Stacker SA, Carnevale KA, Siemionow M, Deitcher SR, DiCorleto PE (2002) Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 99:4434–4442

    Article  PubMed  CAS  Google Scholar 

  • Coates G, O’Brodovich H, Goeree G (1993) Hindlimb and lung lymph flows during prolonged exercise. J Appl Physiol 75:633–638

    PubMed  CAS  Google Scholar 

  • Havas E, Parviainen T, Vuorela J, Toivanen J, Nikula T, Vihko V (1997) Lymph flow dynamics in exercising human skeletal muscle as detected by scintography. J Physiol (Lond) 504:233–239

    Article  CAS  Google Scholar 

  • Havas E, Lehtonen M, Vuorela J, Parviainen T, Vihko V (2000) Albumin clearance from human skeletal muscle during prolonged steady-state running. Exp Physiol 85:863–868

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa S, Young-Kwon H, Harvey N, Schacht V, Matsuda K, Liberman T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586

    PubMed  CAS  Google Scholar 

  • Irjala H, Johansson EL, Grenman R, Alanen K, Salmi M, Jalkanen S (2001) Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med 194:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Jackson DG (2003) The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med 13:1–7

    Article  PubMed  CAS  Google Scholar 

  • Jackson DG, Prevo R, Clasper S, Banerji S (2001) LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 22:317–321

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson S, Kjellmer I (1964) Flow and protein content of lymph in resting and exercising skeletal muscle. Acta physiol Scand 60:278–285

    Google Scholar 

  • Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–1425

    Article  PubMed  CAS  Google Scholar 

  • Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82:673–700

    PubMed  CAS  Google Scholar 

  • Jussila L, Valtola R, Partanen TA, Salven P, Heikkilä P, Matikainen MT, Renkonen R, Kaipainen A, Detmar M, Tschachler E, Alitalo R, Alitalo K (1998) Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res 58:1599–1604

    PubMed  CAS  Google Scholar 

  • Kaipainen A, Korhonen J, Mustonen T, van Hinsberg VWM, Fang G-H, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase FLT4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92:3566–3570

    Article  PubMed  CAS  Google Scholar 

  • Kivelä R, Silvennoinen M, Touvra AM, Lehti TM, Kainulainen H, Vihko V (2006) Effects of experimental type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J 20:1570–1572 (E921–E930)

    Google Scholar 

  • Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V, Alitalo K (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122:3829–3837

    PubMed  CAS  Google Scholar 

  • Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Kärkkäinen MJ, Yuan L, Muriel MP, Chatzopoulou E, Breant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL (2006) VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 9:340–348

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni MC, Skalak TC, Schmid-Schönbein GW (1990) Effects of skeletal muscle fibre deformation on lymphatic volumes. Am J Physiol 259:H1860–H1868

    PubMed  CAS  Google Scholar 

  • Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genet Dev 16:773–783

    Article  CAS  Google Scholar 

  • Olszewski WL, Engeset A, Sokolowski J (1977) Lymph flow and protein in the normal male leg during lying, getting up, and walking. Lymphology 10:178–183

    PubMed  CAS  Google Scholar 

  • Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 156:1499–1504

    PubMed  CAS  Google Scholar 

  • Pajusola K, Aprelikova O, Korhonen J, Kaipainen A, Pertovaara L, Alitalo R, Alitalo K (1992) FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res 52:5738–5743

    PubMed  CAS  Google Scholar 

  • Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Jackson DG, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. PNAS 99:16069–16074

    Article  PubMed  CAS  Google Scholar 

  • Reed RK, Johansen S, Noddeland H (1985) Turnover rate of interstitial albumin in rat skin and skeletal muscle. Effects of limb movements and motor activity. Acta Physiol Scand 125:711–718

    Article  PubMed  CAS  Google Scholar 

  • Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholova I, Kauppinen RA, Achen MG, Stacker SA, Alitalo K, Ylä-Herttuala S (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Ristimäki A, Narko K, Enholm B, Joukov V, Alitalo K (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 273:8413–8418

    Article  PubMed  Google Scholar 

  • Rutanen J, Leppanen P, Tuomisto TT, Rissanen TT, Hiltunen MO, Vajanto I, Niemi M, Hakkinen T, Karkola K, Stacker SA, Achen MG, Alitalo K, Yla-Herttuala S (2003) Vascular endothelial growth factor-D expression in human atherosclerotic lesions. Cardiovasc Res 59:971–979

    Article  PubMed  CAS  Google Scholar 

  • Ryan TJ, Mortimer PS, Jones RL (1986) Lymphatics of the skin. Int J Dermatol 25:411–419

    PubMed  CAS  Google Scholar 

  • Schlingemann RO, Dingjan GM, Emeis JJ, Blok J, Warnaar SO, Ruiter DJ (1985) Monoclonal antibody PAL-E specific for endothelium. Lab Invest 52:71–76

    PubMed  CAS  Google Scholar 

  • Schmid-Schönbein GW (1990) Microlymphatics and lymph flow. Physiol Rev 70:987–1028

    PubMed  Google Scholar 

  • Skalak TC, Schmid-Schönbein GW, Zweifach BW (1984) New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc Res 28:95–112

    Article  PubMed  CAS  Google Scholar 

  • Sleeman JP, Krishnan J, Kirkin V, Bauman P (2001) Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech 55:61–69

    Article  PubMed  CAS  Google Scholar 

  • Stingl J, Stembera O (1974) Distribution and ultrastructure of the initial lymphatics of some skeletal muscles in the rat. Lymphology 7:160–168

    PubMed  CAS  Google Scholar 

  • Valtola R, Salven P, Heikkilä P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K (1999) VEGFR-3 and its ligand VEGF-C are associated in angiogenesis in breast cancer. Am J Pathol 154:1381–1390

    PubMed  CAS  Google Scholar 

  • Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA, Alitalo K (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778

    Article  PubMed  CAS  Google Scholar 

  • Witzenbihler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS, Isner JM (1998) Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the settings of tissue ischemia. Am J Pathol 153:381–394

    Google Scholar 

Download references

Acknowledgments

The present study was financially supported by the LIKES Foundation for Sport and Health Sciences, the Finnish Ministry of Education and the Finnish Graduate School in Musculo-Skeletal Problems. Professor Kari Alitalo (Molecular/Cancer Biology Laboratory, University of Helsinki, Finland) generously provided the VEGFR-3 antibodies. Drs. Lotta Jussila and Marika Kärkkäinen (Molecular/Cancer Biology Laboratory, University of Helsinki, Finland) are acknowledged for their valuable comments and help. Dr. Reino Pitkänen (Central Hospital of Central Finland, Jyväskylä, Finland) is thanked for providing the human skin samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riikka Kivelä.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivelä, R., Havas, E. & Vihko, V. Localisation of lymphatic vessels and vascular endothelial growth factors-C and -D in human and mouse skeletal muscle with immunohistochemistry. Histochem Cell Biol 127, 31–40 (2007). https://doi.org/10.1007/s00418-006-0226-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0226-x

Keywords

Navigation