Skip to main content

Advertisement

Log in

The long-term effect of human immunodeficiency virus infection on retinal microvasculature and the ganglion cell–inner plexiform layer: an OCT angiography study

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the long-term effect of HIV infection on the ganglion cellinner plexiform layer and retinal capillary network.

Methods

This prospective, cross-sectional case-control study included 45 HIV-infected patients and 45 healthy individuals. Optical coherence tomography angiography (OCTA) was used for the assessment of macular, peripapillary retinal nerve fiber layer (RNFL) thicknesses, ganglion cell–inner plexiform layer, vessel density, perfusion density, and foveal avascular zone.

Results

The mean disease duration was 7.3 ± 1.9 years (range, 5–12 years) in the HIV group. The mean CD4 count (nadir) for all the patients was 147.09 ± 122 cells/mm3 and the mean RNA was 173.6 ± 913.8 copies/ml. No statistically significant difference was determined between the groups in respect of the average and foveal MT (p = 0.05). A significant difference was found between the two groups in respect of the mean VD and PD parameters (p < 0.05). Peripapillary PD was significantly decreased in the HIV group. There was a significant difference between the average and superior and inferior half-region of GC-IPL values. Using Pearson’s correlation analysis, no significant correlation was determined between the duration of HIV infection and mean GC-IPL, MT and VD, and PD values (r − 0.223, p 0.141; r − 0.223, p 0.141; r − 0.169, p 0.268; r − 0.105, p 0.491; r − 0.095, p 0.535 respectively).

Conclusions

The results of this study provide evidence of microvascular and neuroretinal loss in individuals with well-suppressed HIV infection, compared with healthy control subjects. OCTA is an important test for the screening of retinal microvascular changes over time in HIV-infected cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Teeraananchai S, Kerr SJ, Amin J, Ruxrungtham K, Law MG (2017) Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis. HIV Med 18:256–266. https://doi.org/10.1111/hiv.12421

    Article  CAS  PubMed  Google Scholar 

  2. Robinson MR, Ross ML, Whitcup SM (1999) Ocular manifestations of HIV infection. Curr Opin Ophthalmol 10:431–437

    Article  CAS  Google Scholar 

  3. Sugar EA, Jabs DA, Ahuja A, Thorne JE, Danis RP, Meinert CL (2012) Incidence of cytomegalovirus retinitis in the era of highly active antiretroviral therapy. Am J Ophthalmol 153:1016–1024.e1015. https://doi.org/10.1016/j.ajo.2011.11.014

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stewart MW (2017) Ophthalmologic disease in HIV infection: recent changes in pathophysiology and treatment. Curr Infect Dis Rep 19:47. https://doi.org/10.1007/s11908-017-0602-9

    Article  PubMed  Google Scholar 

  5. Falkenstein I, Kozak I, Kayikcioglu O, Cheng L, Bartsch DU, Azen SP, Labree LD, Freeman WR (2006) Assessment of retinal function in patients with HIV without infectious retinitis by multifocal electroretinogram and automated perimetry. Retina 26:928–934. https://doi.org/10.1097/01.iae.0000250009.60908.35

    Article  PubMed  Google Scholar 

  6. Kozak I, Sample PA, Hao J, Freeman WR, Weinreb RN, Lee TW, Goldbaum MH (2007) Machine learning classifiers detect subtle field defects in eyes of HIV individuals. Trans Am Ophthalmol Soc 105:111–118 discussion 119-120

    PubMed  PubMed Central  Google Scholar 

  7. Shah KH, Holland GN, Yu F, Van Natta M, Nusinowitz S (2006) Contrast sensitivity and color vision in HIV-infected individuals without infectious retinopathy. Am J Ophthalmol 142:284–292. https://doi.org/10.1016/j.ajo.2006.03.046

    Article  PubMed  Google Scholar 

  8. Kozak I, Sasik R, Freeman WR, Sprague LJ, Gomez ML, Cheng L, El-Emam S, Mojana F, Bartsch DU, Bosten J, Ayyagari R, Hardiman G (2013) A degenerative retinal process in HIV-associated non-infectious retinopathy. PLoS One 8:e74712. https://doi.org/10.1371/journal.pone.0074712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lagathu C, Cossarizza A, Bereziat V, Nasi M, Capeau J, Pinti M (2017) Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers. Aids 31(Suppl 2):S105–s119. https://doi.org/10.1097/qad.0000000000001441

    Article  CAS  PubMed  Google Scholar 

  10. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133:45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616

    Article  PubMed  Google Scholar 

  11. Demirkaya N, Wit FW, van Den Berg TJ, Kooij KW, Prins M, Schlingemann RO, Abramoff MD, Reiss P, Verbraak FD (2016) HIV-associated neuroretinal disorder in patients with well-suppressed HIV-infection: a comparative cohort study. Invest Ophthalmol Vis Sci 57:1388–1397. https://doi.org/10.1167/iovs.15-18537

    Article  CAS  PubMed  Google Scholar 

  12. Arcinue CA, Bartsch DU, El-Emam SY, Ma F, Doede A, Sharpsten L, Gomez ML, Freeman WR (2015) Retinal thickening and photoreceptor loss in HIV eyes without retinitis. PLoS One 10:e0132996. https://doi.org/10.1371/journal.pone.0132996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cetin EN, Sayin Kutlu S, Parca O, Kutlu M, Pekel G (2018) The thicknesses of choroid, macular segments, peripapillary retinal nerve fiber layer, and retinal vascular caliber in HIV-1-infected patients without infectious retinitis. Retina. https://doi.org/10.1097/iae.0000000000002146

  14. Faria EATE, Garcia CR, Mello PA, Muccioli C (2010) Structural and functional assessment in HIV-infected patients using optical coherence tomography and frequency-doubling technology perimetry. Am J Ophthalmol 149:571–576.e572. https://doi.org/10.1016/j.ajo.2009.11.026

    Article  Google Scholar 

  15. Kalyani PS, Holland GN, Fawzi AA, Arantes TE, Yu F, Sadun AA (2012) Association between retinal nerve fiber layer thickness and abnormalities of vision in people with human immunodeficiency virus infection. Am J Ophthalmol 153:734–742, 742.e731. https://doi.org/10.1016/j.ajo.2011.09.019

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blokhuis C, Demirkaya N, Cohen S, Wit FW, Scherpbier HJ, Reiss P, Abramoff MD, Caan MW, Majoie CB, Verbraak FD, Pajkrt D (2016) The eye as a window to the brain: neuroretinal thickness is associated with microstructural white matter injury in HIV-infected children. Invest Ophthalmol Vis Sci 57:3864–3871. https://doi.org/10.1167/iovs.16-19716

    Article  CAS  PubMed  Google Scholar 

  17. Paul R, Ghosh AK, Nag A, Biswas S, Naiya B, Mondal J (2017) Study of retinal nerve fibre layer thickness and visual contrast sensitivity in HIV positive individuals. J Clin Diagn Res 11:Oc01–oc04. https://doi.org/10.7860/jcdr/2017/24751.9956

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bartsch DU, Kozak I, Grant I, Knudsen VL, Weinreb RN, Lee BR, Freeman WR (2015) Retinal nerve fiber and optic disc morphology in patients with human immunodeficiency virus using the Heidelberg retina tomography 3. PLoS One 10:e0133144. https://doi.org/10.1371/journal.pone.0133144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pathai S, Lawn SD, Weiss HA, Cook C, Bekker L-G, Gilbert CE (2013) Retinal nerve fibre layer thickness and contrast sensitivity in HIV-infected individuals in South Africa: a case-control study. PLoS One 8:e73694

    Article  CAS  Google Scholar 

  20. Jabs DA, Drye L, Van Natta ML, Thorne JE, Holland GN, Studies of the Ocular Complications of ARG (2015) Incidence and long-term outcomes of the human immunodeficiency virus neuroretinal disorder in patients with AIDS. Ophthalmology 122:760–768. https://doi.org/10.1016/j.ophtha.2014.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  21. Invernizzi A, Acquistapace A, Bochicchio S, Resnati C, Rusconi S, Ferrari M, Leta V, Pomati S, Klistorner A, McCluskey P, Staurenghi G, Riva A (2018) Correlation between inner retinal layer thickness and cognitive function in HIV: new insights from an exploratory study. Aids 32:1485–1490. https://doi.org/10.1097/qad.0000000000001850

    Article  PubMed  Google Scholar 

  22. Sari ES, Koc R, Yazici A, Sahin G, Ermis SS (2015) Ganglion cell-inner plexiform layer thickness in patients with Parkinson disease and association with disease severity and duration. J Neuroophthalmol 35:117–121. https://doi.org/10.1097/wno.0000000000000203

    Article  PubMed  Google Scholar 

  23. Zhang X, Francis BA, Dastiridou A, Chopra V, Tan O, Varma R, Greenfield DS, Schuman JS, Huang D (2016) Longitudinal and cross-sectional analyses of age effects on retinal nerve fiber layer and ganglion cell complex thickness by Fourier-domain OCT. Transl Vis Sci Technol 5:1. https://doi.org/10.1167/tvst.5.2.1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iester M, Violanti S, Borgia L (2015) Clinical assessment of retinal changes by spectral-domain OCT. Eur J Ophthalmol 25:443–447. https://doi.org/10.5301/ejo.5000602

    Article  PubMed  Google Scholar 

  25. Jabs DA, Van Natta ML, Pak JW, Danis RP, Hunt PW (2017) Incidence of intermediate-stage age-related macular degeneration in patients with acquired immunodeficiency syndrome. Am J Ophthalmol 179:151–158. https://doi.org/10.1016/j.ajo.2017.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agarwal A, Invernizzi A, Acquistapace A, Riva A, Agrawal R, Jain S, Aggarwal K, Gupta V, Dogra MR, Singh R (2017) Analysis of retinochoroidal vasculature in human immunodeficiency virus infection using spectral-domain OCT angiography. Ophthalmol Retina 1:545–554. https://doi.org/10.1016/j.oret.2017.03.007

    Article  PubMed  Google Scholar 

  27. Hsue PY, Deeks SG, Hunt PW (2012) Immunologic basis of cardiovascular disease in HIV-infected adults. J Infect Dis 205(Suppl 3):S375–S382. https://doi.org/10.1093/infdis/jis200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pathai S, Weiss HA, Lawn SD, Peto T, D'Costa LM, Cook C, Wong TY, Gilbert CE (2012) Retinal arterioles narrow with increasing duration of anti-retroviral therapy in HIV infection: a novel estimator of vascular risk in HIV? PLoS One 7:e51405. https://doi.org/10.1371/journal.pone.0051405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Chai H, Lin PH, Yao Q, Chen C (2009) Roles and mechanisms of human immunodeficiency virus protease inhibitor ritonavir and other anti-human immunodeficiency virus drugs in endothelial dysfunction of porcine pulmonary arteries and human pulmonary artery endothelial cells. Am J Pathol 174:771–781. https://doi.org/10.2353/ajpath.2009.080157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahrettin Akay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

IKCU Ethics Board 14.02.2019/19. All procedures performed in studies involving human participants were in accordance with the ethical standards of the IKCU Ethics Board and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akmaz, B., Akay, F., Güven, Y.Z. et al. The long-term effect of human immunodeficiency virus infection on retinal microvasculature and the ganglion cell–inner plexiform layer: an OCT angiography study. Graefes Arch Clin Exp Ophthalmol 258, 1671–1676 (2020). https://doi.org/10.1007/s00417-020-04749-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04749-x

Keywords

Navigation