Skip to main content

Advertisement

Log in

Evaluating relaxed ciliary muscle tone in presbyopic eyes

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Studies of age-related changes in ciliary muscle (CM) morphology and contractility have variously reported that CM weakens or strengthens with age. In response, the aim of this study was to evaluate relaxed CM tone in vivo in pre-presbyopic and presbyopic patients using a predictor value (PCM).

Methods

Two groups of eyes—40 eyes of 40 healthy volunteers with a mean age of 28.1 ± 5.8 years and 40 eyes of 40 healthy volunteers with a mean age of 56.6 ± 7.3 years—formed the sample for this prospective, observational cross-sectional study. Used to evaluate relaxed CM tone, PCM was calculated as the difference between the change in mean anterior chamber depth (ACD) and lens thickness (LT) before and after cycloplegia, as measured with swept-source optical biometry.

Results

The PCM for relaxed CM tone was 0.04 ± 0.04 mm in pre-presbyopic participants, 0.06 ± 0.03 mm in presbyopic ones, and significantly greater in presbyopic patients (p = .018).

Conclusion

The statistical significance of PCM between pre-presbyopic and presbyopic eyes might not signify clinical significance, since the difference was close to the repeatability limits for swept-source optical biometry. When relaxed, CM tone does not diminish with presbyopia according to changes in anterior chamber parameters due to cycloplegia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schachar RA (2012) The mechanism of accommodation and presbyopia. Kugler Publishers, Amsterdam, The Netherlands

    Google Scholar 

  2. Glasser A, Campbell MC (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vis Res 39:1991–2015

    Article  CAS  PubMed  Google Scholar 

  3. Atchison DA (1995) Accomodation and presbyopia. Ophthalmic Physiol Opt 15:255–272

    Article  CAS  PubMed  Google Scholar 

  4. Strenk SA, Strenk LM, Koretz JF (2005) The mechanism of presbyopia. Prog Retin Eye Res 24:379–393

    Article  PubMed  Google Scholar 

  5. Weale RA (1989) Presbyopia toward the end of the 20th Century. Surv Ophthalmol 34:15–30

    Article  CAS  PubMed  Google Scholar 

  6. Pierscionek B (1993) What we know and understand about presbyopia. Clin Exp Optom 76:83–90

    Article  Google Scholar 

  7. Stark L (1998) Presbyopia in light of accommodation. Am J Optom Physiol Opt 65:407–416

    Article  Google Scholar 

  8. Duane A (1922) Studies in monocular and binocular accommodation with their clinical applications. Am J Ophthalmol 5:865–877

    Article  Google Scholar 

  9. Duane A (1925) Are the current theories of accommodation correct? Am J Ophthalmol 8:196–202

    Article  Google Scholar 

  10. Fisher RF (1977) The force of contraction of the human ciliary muscle during accommodation. J Physiol 270:51–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fincham EF (1932) The mechanism of accommodation and the recession of the near point. Report of a Joint Discussion on Vision held at Imperial College. The Physical Society, London, pp 294–308

    Google Scholar 

  12. Fisher RF (1969) The significance of the shape of the lens and capsular energy changes during accommodation. J Physiol 201:21–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fisher RF (1971) The elastic constants of the human lens. J Physiol 212:147–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fisher RF (1973) Presbyopia and the changes with age in the human crystalline lens. J Physiol 228:765–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glasser A, Campbell MCW (1998) Presbyopia and the optical changes in the human crystalline lens with age. Vis Res 38:209–229

    Article  CAS  PubMed  Google Scholar 

  16. Beers APA, Van der Heijde GL (1994) In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism. Vis Res 34:2897–2905

    Article  CAS  PubMed  Google Scholar 

  17. Beers APA, van der Heijde GL (1996) Age-related changes in accommodation. Optom Vis Sci 73:235–242

    Article  CAS  PubMed  Google Scholar 

  18. Charman WN (2008) The eye in focus: accommodation and presbyopia. Clin Exp Optom 91:207–225

    Article  PubMed  Google Scholar 

  19. Pardue MT, Sivak JG (2000) Age-related changes in human ciliary muscle. Optom Vis Sci 77:204–210

    Article  CAS  PubMed  Google Scholar 

  20. Tamm E, Lütjen-Drecoll E, Jungkunz W, Rohen JW (1991) Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 32:1678–1692

    CAS  PubMed  Google Scholar 

  21. Tamm E, Croft MA, Jungkunz W, Lütjen-Drecoll E, Kaufman PL (1992) Age-related loss of ciliary muscle mobility in the rhesus monkey: role of the choroid. Arch Ophthalmol 110:871–876

    Article  CAS  PubMed  Google Scholar 

  22. Harocopos GJ, Shui YB, McKinnon M, Holekamp NM, Gordon MO, Beebe DC (2004) Importance of vitreous liquefaction in age-related cataract. Invest Ophthalmol Vis Sci 45:77–85

    Article  PubMed  Google Scholar 

  23. Pau H, Kranz J (1991) The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia. Graefes Arch Clin Exp Ophthalmol 229:294–296

    Article  CAS  PubMed  Google Scholar 

  24. Lütjen-Drecoll E, Tamm E, Kaufman PL (1988) Age-related loss of morphologic responses to pilocarpine in rhesus monkey ciliary muscle. Arch Ophthalmol 106:1591–1598

    Article  PubMed  Google Scholar 

  25. Swegmark G (1969) Studies with impedance cyclography on human ocular accommodation at different ages. Acta Ophthalmol 47:1186–1206

    Article  CAS  Google Scholar 

  26. Schachar RA, Anderson DA (1995) The mechanism of ciliary muscle function. Ann Ophthalmol 27:126–132

    Google Scholar 

  27. Strenk SA, Semmlow JL, Strenk LM, Munoz P, Gronlund-Jacob J, DeMarco JK (1999) Age-related changes in human ciliary muscle and lens: a MRI study. Invest Ophthalmol Vis Sci 40:1162–1169

    CAS  PubMed  Google Scholar 

  28. Palamar M, Egrilmez S, Uretmen O, Yagci A, Kose S (2011) Influences of cyclopentolate hydrochloride on anterior segment parameters with Pentacam in children. Acta Ophthalmol 89:e461–e465

    Article  PubMed  Google Scholar 

  29. Wendt M, Croft MA, McDonald J, Kaufman PL, Glasser A (2008) Lens diameter and thickness as a function of age and pharmacologically stimulated accommodation in rhesus monkeys. Exp Eye Res 86:746–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Sullivan SB (2007) Examination of motor function: motor control and motor learning. In: O’Sullivan SB, Schmitz TJ (eds) Physical rehabilitation, 5th edn. F. A. Davis Company, Philadelphia, pp 233–234

    Google Scholar 

  31. Tamm S, Tamm E, Rohen JW (1992) Age–related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev 62:209–221

    Article  CAS  PubMed  Google Scholar 

  32. Nishida S, Mizutani S (1992) Quantitative and morphometric studies of age-related changes in human ciliary muscle. Jpn J Ophthalmol 36:380–387

    CAS  PubMed  Google Scholar 

  33. Sheppard AL, Davies LN (2011) The effect of aging on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci 52:1809–1816

    Article  PubMed  Google Scholar 

  34. Fisher RF (1986) The ciliary body in accommodation. Trans Ophthalmol Soc UK 105:208–219

    PubMed  Google Scholar 

  35. Koeppl C, Findl O, Kriechbaum K, Drexler W (2005) Comparison of pilocarpine-induced and stimulus-driven accommodation in phakic eyes. Exp Eye Res 80:795–800

    Article  CAS  PubMed  Google Scholar 

  36. Kriechbaum K, Findl O, Koeppl C, Menapace R, Drexler W (2005) Stimulus-driven versus pilocarpine-induced biometric changes in pseudophakic eyes. Ophthalmology 112:453–459

    Article  CAS  PubMed  Google Scholar 

  37. Kunert KS, Peter M, Blum M et al (2016) Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg 42:76–83

    Article  PubMed  Google Scholar 

  38. Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S (2015) Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg 41:2224–2232

    Article  PubMed  Google Scholar 

  39. Atchison DA, Collins MJ, Wildsoet CF, Christensen J, Waterworth MD (1995) Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique. Vis Res 35:313–323

    Article  CAS  PubMed  Google Scholar 

  40. Dubbelman M, Van der Heijde GL, Weeber HA (2005) Change in shape of the aging human crystalline lens with accommodation. Vis Res 45:117–132

    Article  CAS  PubMed  Google Scholar 

  41. Farnsworth PN, Shyne SE (1979) Anterior zonular shifts with age. Exp Eye Res 28:291–297

    Article  CAS  PubMed  Google Scholar 

  42. Sakabe I, Oshika T, Lim SJ, Apple DJ (1998) Anterior shift of zonular insertion onto the anterior surface of human crystalline lens with age. Ophthalmology 105:295–299

    Article  CAS  PubMed  Google Scholar 

  43. Arıcı C, Turk A, Ceylan OM, Kola M, Hurmeric V (2014) Effects of 1% cyclopentolate hydrochloride on anterior segment parameters obtained with Pentacam in young adults. Arq Bras Oftalmol 77:228–232

    PubMed  Google Scholar 

  44. Can E, Duran M, Çetinkaya T, Arıtürk N (2016) The effect of pupil dilation on AL-scan biometric parameters. Int Ophthalmol 36:179–183

    Article  PubMed  Google Scholar 

  45. Arriola-Villalobos P, Diaz-Valle D (2014) Effect of pharmacologic pupil dilation on OLCR optical biometry measurements for IOL predictions. Eur J Ophthalmol 24:53–57

    Article  PubMed  Google Scholar 

  46. Huang J, McAlinden C, Su B, Pesudovs K, Feng Y, Hua Y, Yang F, Pan C, Zhou H, Wang Q (2012) The effect of cycloplegia on lenstar and the IOLMaster biometry. Optom Vis Sci 89:1691–1696

    Article  PubMed  Google Scholar 

  47. Marchini G, Babighian S, Tosi R, Perfetti S, Bonomi L (2003) Comparative study of the effects of 2% ibopamine, 10% phenylephrine, and 1% tropicamide on the anterior segment. Invest Ophthalmol Vis Sci 44:281–289

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr Kursad Tosun (PhD, MSK University, Faculty of Medicine, Department of Biostatistics) and Mr. Ercan Baldemir (PhD, MSK University, Faculty of Medicine, Department of Biostatistics) for their assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Özyol.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özyol, E., Özyol, P. Evaluating relaxed ciliary muscle tone in presbyopic eyes. Graefes Arch Clin Exp Ophthalmol 255, 973–978 (2017). https://doi.org/10.1007/s00417-017-3621-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3621-1

Keywords

Navigation