Skip to main content

Advertisement

Log in

The effects of VEGF-A-inhibitors aflibercept and ranibizumab on the ciliary body and iris of monkeys

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of intravitreal ranibizumab (Lucentis®) and aflibercept (Eylea®) on the ciliary body and the iris of 12 cynomolgus monkeys with regard to the fenestrations of their blood vessels.

Materials and methods

Structural changes in the ciliary body and in the iris were investigated with light, fluorescent, and transmission electron microscopy (TEM). The latter was used to specifically quantify fenestrations of the endothelium of blood vessels after treatment with aflibercept and ranibizumab. Each of the two ciliary bodies treated with aflibercept and the two treated with ranibizumab and their controls were examined after 1 and 7 days respectively. Ophthalmological investigations including funduscopy and intraocular pressure measurements were also applied.

Results

Ophthalmological investigations did not reveal any changes within the groups. Both drugs reduced the VEGF concentration in the ciliary body pigmented epithelium. The structure of the ciliary body was not influenced, while the posterior pigmented epithelium of the iris showed vacuoles after aflibercept treatment. Ranibizumab was mainly concentrated on the surface layer of the ciliary epithelium, in the blood vessel walls and the lumen of some of the blood vessels, and in the cells of the epithelium of the ciliary body. Aflibercept was more concentrated in the stroma and not in the cells of the epithelium, but as with ranibizumab, also in the blood vessel walls and some of their lumina, and again on the surface layer of the epithelium. Both aflibercept-and ranibizumab-treated eyes showed a decreased number of fenestrations of the capillaries in the ciliary body compared to the untreated controls. On day 1 and day 7, aflibercept had fewer fenestrations than the ranibizumab samples of the same day.

Conclusions

Both aflibercept and ranibizumab were found to reach the blood vessel walls of the ciliary body, and effectively reduced their fenestrations. Aflibercept might eliminate VEGF to a greater extent, possibly due to a higher elimination of fenestrations in a shorter time. Moreover, the vacuoles found in the iris need further research, in order to evaluate whether they carry a possible pathological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tah V, Orlans HO, Hyer J, Casswell E, Din N, Sri Shanmuganathan V, Ramskold L, Pasu S (2015) Anti-VEGF therapy and the retina: an update. J Ophthalmol: 627674. doi 10.1155/2015/627674

  2. Bikbov MM, Babushkin AE, Orenburkina OI (2012) Anti-VEGF-agents in treatment of neovascular glaucoma. Vestn Oftalmol 128:50–53

    CAS  PubMed  Google Scholar 

  3. Grisanti S, Biester S, Peters S, Tatar O, Ziemssen F, Bartz-Schmidt KU, Tuebingen Bevacizumab Study G (2006) Intracameral bevacizumab for iris rubeosis. Am J Ophthalmol 142:158–160. doi:10.1016/j.ajo.2006.02.045

    Article  CAS  PubMed  Google Scholar 

  4. Tolentino M (2011) Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol 56:95–113. doi:10.1016/j.survophthal.2010.08.006

    Article  PubMed  Google Scholar 

  5. Barkmeier AJ, Akduman L (2009) Bevacizumab (Avastin) in ocular processes other than choroidal neovascularization. Ocul Immunol Inflamm 17:109–117. doi:10.1080/09273940802596534

    Article  CAS  PubMed  Google Scholar 

  6. Cheung LK, Eaton A (2013) Age-related macular degeneration. Pharmacotherapy 33:838–855. doi:10.1002/phar.1264

    Article  CAS  PubMed  Google Scholar 

  7. Peters S, Heiduschka P, Julien S, Ziemssen F, Fietz H, Bartz-Schmidt KU, Tubingen Bevacizumab Study G, Schraermeyer U (2007) Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am J Ophthalmol 143:995–1002. doi:10.1016/j.ajo.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  8. Julien S, Biesemeier A, Taubitz T, Schraermeyer U (2014) Different effects of intravitreally injected ranibizumab and aflibercept on retinal and choroidal tissues of monkey eyes. Br J Ophthalmol 98:813–825. doi:10.1136/bjophthalmol-2013-304019

    Article  PubMed  Google Scholar 

  9. Ford KM, Saint-Geniez M, Walshe T, Zahr A, D’Amore PA (2011) Expression and role of VEGF in the adult retinal pigment epithelium. Invest Ophthalmol Vis Sci 52:9478–9487. doi:10.1167/iovs.11-8353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Helmholtz H (1855) Ueber die Accommodation des Auges. Graefes Arch Clin Exp Ophthalmol 1:1–74. doi:10.1007/BF02720789

    Article  Google Scholar 

  11. Welsch U, Deller T (2010) Lehrbuch Histologie. Urban & Fischer Verlag/Elsevier, Munich, pp 210, 504

  12. Ford KM, Saint-Geniez M, Walshe TE, D’Amore PA (2012) Expression and role of VEGF--a in the ciliary body. Invest Ophthalmol Vis Sci 53:7520–7527. doi:10.1167/iovs.12-10098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560. doi:10.1016/j.yexcr.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  14. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:789–791. doi:10.1161/ATVBAHA.108.179663

    Article  CAS  PubMed  Google Scholar 

  15. Wolf S (2008) Current status of anti-vascular endothelial growth factor therapy in Europe. Jpn J Ophthalmol 52:433–439. doi:10.1007/s10384-008-0580-4

    Article  CAS  PubMed  Google Scholar 

  16. Schlingemann RO, van Hinsbergh VW (1997) Role of vascular permeability factor/vascular endothelial growth factor in eye disease. Br J Ophthalmol 81:501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schraermeyer U, Julien S (2013) Effects of bevacizumab in retina and choroid after intravitreal injection into monkey eyes. Expert Opin Biol Ther 13:157–167. doi:10.1517/14712598.2012.748741

    Article  CAS  PubMed  Google Scholar 

  18. Tschulakow A, Christner S, Julien S, Ludinsky M, van der Giet M, Schraermeyer U (2014) Effects of a single intravitreal injection of aflibercept and ranibizumab on glomeruli of monkeys. PLoS One 9, e113701. doi:10.1371/journal.pone.0113701

    Article  PubMed  PubMed Central  Google Scholar 

  19. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186. doi:10.1056/NEJM197111182852108

    Article  CAS  PubMed  Google Scholar 

  20. Folkman J (1992) Angiogenesis—retrospect and outlook. EXS 61:4–13

    CAS  PubMed  Google Scholar 

  21. Fine SL, Berger JW, Maguire MG, Ho AC (2000) Age-related macular degeneration. N Engl J Med 342:483–492. doi:10.1056/NEJM200002173420707

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen DH, Luo J, Zhang K, Zhang M (2013) Current therapeutic approaches in neovascular age-related macular degeneration. Discov Med 15:343–348

    PubMed  Google Scholar 

  23. Peters S, Heiduschka P, Julien S, Bartz-Schmidt KU, Schraermeyer U (2008) Immunohistochemical localisation of intravitreally injected bevacizumab in the anterior chamber angle, iris and ciliary body of the primate eye. Br J Ophthalmol 92:541–544. doi:10.1136/bjo.2007.133496

    Article  CAS  PubMed  Google Scholar 

  24. Yazdani S, Hendi K, Pakravan M (2007) Intravitreal bevacizumab (Avastin) injection for neovascular glaucoma. J Glaucoma 16:437–439. doi:10.1097/IJG.0b013e3180457c47

    Article  PubMed  Google Scholar 

  25. Wolf A, von Jagow B, Ulbig M, Haritoglou C (2011) Intracameral injection of bevacizumab for the treatment of neovascular glaucoma. Ophthalmologica 226:51–56. doi:10.1159/000327364

    Article  CAS  PubMed  Google Scholar 

  26. Ghanem AA, El-Kannishy AM, El-Wehidy AS, El-Agamy AF (2009) Intravitreal bevacizumab (avastin) as an adjuvant treatment in cases of neovascular glaucoma. Middle East African J Ophthalmol 16:75–79. doi:10.4103/0974-9233.53865

    Article  Google Scholar 

  27. Luke J, Nassar K, Luke M, Grisanti S (2013) Ranibizumab as adjuvant in the treatment of rubeosis iridis and neovascular glaucoma—results from a prospective interventional case series. Graefes Arch Clin Exp Ophthalmol 251:2403–2413. doi:10.1007/s00417-013-2428-y

    Article  PubMed  Google Scholar 

  28. Tu Y, Fay C, Guo S, Zarbin MA, Marcus E, Bhagat N (2012) Ranibizumab in patients with dense cataract and proliferative diabetic retinopathy with rubeosis. Oman J Ophthalmol 5:161–165. doi:10.4103/0974-620X.106099

    Article  PubMed  PubMed Central  Google Scholar 

  29. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108(Pt 6):2369–2379

    CAS  PubMed  Google Scholar 

  31. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52. doi:10.1016/S0002-9440(10)63273-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ardeljan D, Chan CC (2013) Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 37:68–89. doi:10.1016/j.preteyeres.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  33. Salvi SM, Akhtar S, Currie Z (2006) Ageing changes in the eye. Postgrad Med J 82:581–587. doi:10.1136/pgmj.2005.040857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roser M (2016) Life Expectancy. http://ourworldindata.org/data/population-growth-vital-statistics/life-expectancy/. Accessed 25 Mar 2016

  35. Cawthon LK (2006) Primate Factsheets: long-tailed macaque (Macaca fascicularis) Taxonomy, Morphology, & Ecology. <http://pin.primate.wisc.edu/factsheets/entry/long-tailed_macaque>. Accessed 2016 March 21. Wisconsin Primate Research Center (WPRC) Library at the University of Wisconsin-Madison

  36. Jovanovik-Pandova L, Watson PG, Liu C, Chan WY, de Wolff-Rouendaal D, Barthen ER, Emmanouilidis-van der Spek K, Jager MJ (2006) Ciliary tissue transplantation in the rabbit. Exp Eye Res 82:247–257. doi:10.1016/j.exer.2005.06.019

    Article  CAS  PubMed  Google Scholar 

  37. Schraermeyer U, Julien S (2012) Formation of immune complexes and thrombotic microangiopathy after intravitreal injection of bevacizumab in the primate eye. Graefe’s archive for clinical and experimental ophthalmology. Graefes Arch Clin Exp Ophthalmol 250:1303–1313. doi:10.1007/s00417-012-2055-z

  38. Martel JN, Han Y, Lin SC (2011) Severe intraocular pressure fluctuation after intravitreal anti-vascular endothelial growth factor injection. Ophthalmic Surg Lasers Imaging : Off J Int Soc Imaging Eye 42:e100–e102. doi:10.3928/15428877-20111006-02

    Google Scholar 

  39. Mete A, Saygili O, Mete A, Bayram M, Bekir N (2010) Effects of intravitreal bevacizumab (Avastin) therapy on retrobulbar blood flow parameters in patients with neovascular age-related macular degeneration. J Clin Ultrasound 38:66–70. doi:10.1002/jcu.20650

    Article  PubMed  Google Scholar 

  40. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136. doi:10.1056/NEJMoa0707330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D’Amore PA (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205:491–501. doi:10.1084/jem.20072041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ, D’Amore PA (2008) Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS One 3, e3554. doi:10.1371/journal.pone.0003554

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O’Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, McDonald DM (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290:H560–576. doi:10.1152/ajpheart.00133.2005

    Article  CAS  PubMed  Google Scholar 

  44. Yanoff M, Fine BS, Berkow JW (1970) Diabetic lacy vacuolation of iris pigment epithelium; a histopathologic report. Am J Ophthalmol 69:201–210

    Article  CAS  PubMed  Google Scholar 

  45. Fischer R, Henkind P, Gartner S (1979) Microcysts of the human iris pigment epithelium. Br J Ophthalmol 63:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aref AA, Scott IU (2011) Management of macular edema secondary to branch retinal vein occlusion: an evidence-based update. Adv Ther 28:28–39. doi:10.1007/s12325-010-0089-3

    Article  PubMed  Google Scholar 

  47. Lee K, Jung H, Sohn J (2014) Comparison of injection of intravitreal drugs with standard care in macular edema secondary to branch retinal vein occlusion. Korean J Ophthalmol : KJO 28:19–25. doi:10.3341/kjo.2014.28.1.19

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schmidt-Erfurth U, Lang GE, Holz FG, Schlingemann RO, Lanzetta P, Massin P, Gerstner O, Bouazza AS, Shen H, Osborne A, Mitchell P, Group RES (2014) Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology 121:1045–1053. doi:10.1016/j.ophtha.2013.11.041

    Article  PubMed  Google Scholar 

  49. Barge S, Rothwell R, Sepulveda P, Agrelos L (2013) Intravitreal and subtenon depot triamcinolone as treatment of retinitis pigmentosa associated cystoid macular edema. Case Rep Ophthalmol Med 2013:591681. doi:10.1155/2013/591681

    PubMed  PubMed Central  Google Scholar 

  50. Sugimoto Y, Mochizuki H, Miyagi H, Kawamata S, Kiuchi Y (2013) Histological findings of uveal capillaries in rabbit eyes after multiple intravitreal injections of bevacizumab. Curr Eye Res 38:487–496. doi:10.3109/02713683.2013.763990

    Article  CAS  PubMed  Google Scholar 

  51. Simorre-Pinatel V, Guerrin M, Chollet P, Penary M, Clamens S, Malecaze F, Plouet J (1994) Vasculotropin-VEGF stimulates retinal capillary endothelial cells through an autocrine pathway. Invest Ophthalmol Vis Sci 35:3393–3400

    CAS  PubMed  Google Scholar 

  52. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171:53–67. doi:10.2353/ajpath.2007.061237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Byeon SH, Lee SC, Choi SH, Lee HK, Lee JH, Chu YK, Kwon OW (2010) Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci 51:1190–1197. doi:10.1167/iovs.09-4144

    Article  PubMed  Google Scholar 

  54. Beazley-Long N, Hua J, Jehle T, Hulse RP, Dersch R, Lehrling C, Bevan H, Qiu Y, Lagreze WA, Wynick D, Churchill AJ, Kehoe P, Harper SJ, Bates DO, Donaldson LF (2013) VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro. Am J Pathol 183:918–929. doi:10.1016/j.ajpath.2013.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schraermeyer.

Ethics declarations

Funding

Novartis provided financial support in the form of a honorarium for author US.

The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) other then stated below, or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript. STZ OcuTox Preclinical Drug Assessment provided support in the form of an honorarium for author US, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Animal experiments

Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted (Covance Studies 8260977 and 8274007).

Additional information

Maximilian Ludinsky and Sarah Christner are first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludinsky, M., Christner, S., Su, N. et al. The effects of VEGF-A-inhibitors aflibercept and ranibizumab on the ciliary body and iris of monkeys. Graefes Arch Clin Exp Ophthalmol 254, 1117–1125 (2016). https://doi.org/10.1007/s00417-016-3344-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3344-8

Keywords

Navigation