Skip to main content

Advertisement

Log in

Cognitive dysfunction in patients with spinocerebellar ataxia type 6

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the cognitive functions of patients with spinocerebellar ataxia type 6 (SCA6). We examined 13 patients with genetically confirmed SCA6 and 13 healthy control subjects matched for age, years of education, global cognitive status, and intellectual ability. We administered verbal memory (word recall and word recognition), executive function (digit span, category and letter fluency, Frontal Assessment Battery, and Trail Making Test-A and B), and visuospatial construction (figure copying) tests. We found that the patients with SCA6 had significantly lower scores on the demanding word recall and letter fluency tests compared to the control subjects, while word recognition was well preserved in the patients with SCA6. The other executive functions tested, as well as visuospatial construction, were preserved in the SCA6 group. However, although memory encoding and storage processes were preserved, the retrieval of memorized information concerning frontal function might be selectively affected in patients with SCA6 compared to in control subjects. The impaired word recall and letter fluency noted in patients with SCA6 were interpreted as being related to a word-retrieval disability. Such dysfunctions may be attributed to damage in the frontal-cerebellum circuit owing to SCA6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579. doi:10.1093/brain/121.4.561

    Article  PubMed  Google Scholar 

  2. Zhuchenko O, Bailey J, Bonnen P et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69. doi:10.1038/ng0197-62

    Article  CAS  PubMed  Google Scholar 

  3. Ishikawa K, Watanabe M, Yoshizawa K et al (1999) Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry 67:86–89. doi:10.1136/jnnp.67.1.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kawai Y, Suenaga M, Watanabe H, Sobue G (2008) Cognitive impairment in spinocerebellar degeneration. Eur Neurol 61:257–268. doi:10.1159/000206850

    Article  Google Scholar 

  5. Globas C, Bösch S, Zühlke Ch, Daum I, Dichgans J, Bürk K (2003) The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol 250:1482–1487. doi:10.1007/s00415-003-0258-2

    Article  CAS  PubMed  Google Scholar 

  6. Garrard P, Martin NH, Giunti P, Cipolotti L (2008) Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol 255:398–405. doi:10.1007/s00415-008-0680-6

    Article  CAS  PubMed  Google Scholar 

  7. Suenaga M, Kawai Y, Watanabe H et al (2008) Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry 79:496–499. doi:10.1136/jnnp2007.119883

    Article  CAS  PubMed  Google Scholar 

  8. Cooper FE, Grube M, Elsegood KJ, Welch JL, Kelly TP, Chinnery PF, Griffiths TD (2010) The contribution of the cerebellum to cognition in Spinocerebellar Ataxia Type 6. Behav Neurol 23:3–15. doi:10.3233/BEN-2010-0265

    Article  PubMed  PubMed Central  Google Scholar 

  9. Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, Helmstaedter C (2010) Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum 9:433–442. doi:10.1007/s12311-010-0183-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Matsumoto K, Samejima K (1977) Introduction of clinical psychological assessment. Igakusyuppansya, Tokyo (in Japanese)

    Google Scholar 

  11. Ohtsuka T, Honma A (1991) Manual of cognitive function tests. World planning, Tokyo (in Japanese)

    Google Scholar 

  12. Takagi R, Kajimoto Y, Kamiyoshi S, Miwa H, Kondo T (2002) The frontal assessment battery at bedside (FAB) in patients with Parkinson’s disease. No To Shinkei 54:897–902 (in Japanese)

    PubMed  Google Scholar 

  13. Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM (2003) Does the cerebellum contribute to specific aspects of attention? Neuropsychologia 41:1452–1460. doi:10.1016/S0028-3932(03)00090-3

    Article  PubMed  Google Scholar 

  14. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM (2004) Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry 75:1524–1531. doi:10.1136/jnnp.200.018093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129:306–320. doi:10.1093/brain/awh685

    Article  PubMed  Google Scholar 

  16. Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S (1994) Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci USA 91:2016–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabeza R, Kapur S, Craik FI, McIntosh AR, Houle S, Tulving E (1997) Functional neuroanatomy of recall and recognition: a PET study of episodic memory. J Cogn Neurosci 9:254–265. doi:10.1162/jocn.1997.9.2.254

    Article  CAS  PubMed  Google Scholar 

  18. Schlösser R, Hutchinson M, Joseffer S et al (1998) Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry 64:492–498. doi:10.1136/jnnp.64.4.492

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gourovitch ML, Kirkby BS, Goldberg TE et al (2000) A comparison of rCBF patterns during letter and semantic fluency. Neuropsychology 14:353–360. doi:10.1037/0894-4105.14.3.353

    Article  CAS  PubMed  Google Scholar 

  20. Kawai Y, Suenaga M, Watanabe H et al (2008) Prefrontal hypoperfusion and cognitive dysfunction correlates in spinocerebellar ataxia type 6. J Neurol Sci 271:68–74. doi:10.1016/j.jns.2008.03.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ken Sakushima for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Tamura.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Ethical standard statement

The study was performed in accordance with the guidelines of the 1964 Declaration of Helsinki. Oral informed consent was obtained from each subject. This study was approved by the local ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, I., Takei, A., Hamada, S. et al. Cognitive dysfunction in patients with spinocerebellar ataxia type 6. J Neurol 264, 260–267 (2017). https://doi.org/10.1007/s00415-016-8344-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8344-4

Keywords

Navigation