Skip to main content

Advertisement

Log in

Serial electrophysiological findings in Guillain–Barré syndrome not fulfilling AIDP or AMAN criteria

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Guillain–Barré syndrome (GBS) is categorized into two major subtypes: acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). However, a proportion of patients are electrophysiologically unclassified because of electrophysiological findings that do not fulfil AIDP or AMAN criteria, and underlying pathophysiological mechanisms and lesion distributions of unclassified patients are not well defined. The aims of this study are to elucidate disease pathophysiology and lesion distribution in unclassified patients. We retrospectively studied 48 consecutive GBS patients. Patients were classified on the basis of initial electrophysiological findings according to Ho’s criteria. Clinical and serial electrophysiological examinations of unclassified patients were conducted. Twelve (25 %) GBS patients were unclassified. All unclassified patients were able to walk independently at 21 days after onset. No unclassified patients, except one patient with diabetes mellitus, had sensory nerve involvement. Eight patients underwent a follow-up study within 15 days of the initial study. Distal motor latencies (DMLs) of the left median motor nerve were found to be significantly and uniformly decreased compared with initial studies (p = 0.008). DMLs (p < 0.0001) and distal compound action potential (CMAP) durations (p = 0.002) of all nerves were significantly decreased, and distal CMAP amplitudes (p = 0.026) significantly increased compared with initial studies. In unclassified GBS patients, DML values during initial electrophysiological studies would be prolonged compared with expected values in the same patient unaffected by GBS and later improve rapidly with increased distal CMAP amplitudes without the development of excessive temporal dispersions. Lesions are also present in distal nerve segments caused by reversible conduction failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ho TW, Mishu B, Li CY, Gao CY, Cornblath DR, Griffin JW, Asbury AK, Blaser MJ, McKhann GM (1995) Guillain–Barre syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 118(Pt 3):597–605

    Article  PubMed  Google Scholar 

  2. Feasby TE, Gilbert JJ, Brown WF, Bolton CF, Hahn AF, Koopman WF, Zochodne DW (1986) An acute axonal form of Guillain–Barre polyneuropathy. Brain 109(Pt 6):1115–1126

    Article  PubMed  Google Scholar 

  3. McKhann GM, Cornblath DR, Griffin JW, Ho TW, Li CY, Jiang Z, Wu HS, Zhaori G, Liu Y, Jou LP et al (1993) Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann Neurol 33:333–342

    Article  CAS  PubMed  Google Scholar 

  4. Yuki N, Hartung HP (2012) Guillain–Barre syndrome. N Engl J Med 366:2294–2304

    Article  CAS  PubMed  Google Scholar 

  5. Kuwabara S, Yuki N (2013) Axonal Guillain–Barre syndrome: concepts and controversies. Lancet Neurol 12:1180–1188

    Article  PubMed  Google Scholar 

  6. Yuki N, Taki T, Inagaki F, Kasama T, Takahashi M, Saito K, Handa S, Miyatake T (1993) A bacterium lipopolysaccharide that elicits Guillain–Barre syndrome has a GM1 ganglioside-like structure. J Exp Med 178:1771–1775

    Article  CAS  PubMed  Google Scholar 

  7. Kokubun N, Nishibayashi M, Uncini A, Odaka M, Hirata K, Yuki N (2010) Conduction block in acute motor axonal neuropathy. Brain 133:2897–2908

    Article  PubMed  Google Scholar 

  8. Uncini A, Manzoli C, Notturno F, Capasso M (2010) Pitfalls in electrodiagnosis of Guillain–Barre syndrome subtypes. J Neurol Neurosurg Psychiatry 81:1157–1163

    Article  PubMed  Google Scholar 

  9. Hiraga A, Kuwabara S, Ogawara K, Misawa S, Kanesaka T, Koga M, Yuki N, Hattori T, Mori M (2005) Patterns and serial changes in electrodiagnostic abnormalities of axonal Guillain–Barre syndrome. Neurology 64:856–860

    Article  CAS  PubMed  Google Scholar 

  10. Brown WF, Snow R (1991) Patterns and severity of conduction abnormalities in Guillain–Barre syndrome. J Neurol Neurosurg Psychiatry 54:768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olsson Y (1990) Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol 5:265–311

    CAS  PubMed  Google Scholar 

  12. Brown WF, Feasby TE (1984) Conduction block and denervation in Guillain–Barre polyneuropathy. Brain 107(Pt 1):219–239

    Article  PubMed  Google Scholar 

  13. Kuwabara S, Yuki N, Koga M, Hattori T, Matsuura D, Miyake M, Noda M (1998) IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain–Barre syndrome. Ann Neurol 44:202–208

    Article  CAS  PubMed  Google Scholar 

  14. Capasso M, Caporale CM, Pomilio F, Gandolfi P, Lugaresi A, Uncini A (2003) Acute motor conduction block neuropathy Another Guillain–Barre syndrome variant. Neurology 61:617–622

    Article  CAS  PubMed  Google Scholar 

  15. Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K, Hirata K, Baba H, Yuki N (2007) Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci 27:3956–3967

    Article  CAS  PubMed  Google Scholar 

  16. Hosokawa T, Nakajima H, Unoda K, Yamane K, Doi Y, Ishida S, Kimura F, Hanafusa T (2014) An electrophysiological classification associated with Guillain–Barre syndrome outcomes. J Neurol 261:1986–1993

    Article  PubMed  Google Scholar 

  17. Asbury AK, Cornblath DR (1990) Assessment of current diagnostic criteria for Guillain–Barre syndrome. Ann Neurol 27(Suppl):S21–S24

    Article  PubMed  Google Scholar 

  18. Yuki N, Kokubun N, Kuwabara S, Sekiguchi Y, Ito M, Odaka M, Hirata K, Notturno F, Uncini A (2012) Guillain–Barre syndrome associated with normal or exaggerated tendon reflexes. J Neurol 259:1181–1190

    Article  PubMed  Google Scholar 

  19. Hughes RA, Newsom-Davis JM, Perkin GD, Pierce JM (1978) Controlled trial prednisolone in acute polyneuropathy. Lancet 2:750–753

    Article  CAS  PubMed  Google Scholar 

  20. Kimura J (1989) electrodiagnosis in diseases of nerve and muscle: principles and practice. F.A. Davis, Philadelphia

    Google Scholar 

  21. Isose S, Kuwabara S, Kokubun N, Sato Y, Mori M, Shibuya K, Sekiguchi Y, Nasu S, Fujimaki Y, Noto Y, Sawai S, Kanai K, Hirata K, Misawa S (2009) Utility of the distal compound muscle action potential duration for diagnosis of demyelinating neuropathies. J Peripher Nerv Syst 14:151–158

    Article  PubMed  Google Scholar 

  22. Kalita J, Misra UK, Das M (2008) Neurophysiological criteria in the diagnosis of different clinical types of Guillain–Barre syndrome. J Neurol Neurosurg Psychiatry 79:289–293

    Article  CAS  PubMed  Google Scholar 

  23. Kuwabara S, Ogawara K, Mizobuchi K, Koga M, Mori M, Hattori T, Yuki N (2000) Isolated absence of F waves and proximal axonal dysfunction in Guillain–Barre syndrome with antiganglioside antibodies. J Neurol Neurosurg Psychiatry 68:191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feasby TE, Hahn AF, Brown WF, Bolton CF, Gilbert JJ, Koopman WJ (1993) Severe axonal degeneration in acute Guillain–Barre syndrome: evidence of two different mechanisms? J Neurol Sci 116:185–192

    Article  CAS  PubMed  Google Scholar 

  25. Griffin JW, Li CY, Ho TW, Tian M, Gao CY, Xue P, Mishu B, Cornblath DR, Macko C, McKhann GM, Asbury AK (1996) Pathology of the motor-sensory axonal Guillain–Barre syndrome. Ann Neurol 39:17–28

    Article  CAS  PubMed  Google Scholar 

  26. Albers JW, Donofrio PD, McGonagle TK (1985) Sequential electrodiagnostic abnormalities in acute inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve 8:528–539

    Article  CAS  PubMed  Google Scholar 

  27. Kuwabara S, Ogawara K, Misawa S, Mizobuchi K, Sung JY, Kitano Y, Mori M, Hattori T (2004) Sensory nerve conduction in demyelinating and axonal Guillain–Barre syndromes. Eur Neurol 51:196–198

    Article  PubMed  Google Scholar 

  28. Kuwabara S, Ogawara K, Misawa S, Koga M, Mori M, Hiraga A, Kanesaka T, Hattori T, Yuki N (2004) Does Campylobacter jejuni infection elicit “demyelinating” Guillain–Barre syndrome? Neurology 63:529–533

    Article  CAS  PubMed  Google Scholar 

  29. Clouston PD, Kiers L, Zuniga G, Cros D (1994) Quantitative analysis of the compound muscle action potential in early acute inflammatory demyelinating polyneuropathy. Electroencephalogr Clin Neurophysiol 93:245–254

    Article  CAS  PubMed  Google Scholar 

  30. Baba M, Matsunaga M (1984) Recovery from acute demyelinating conduction block in the presence of prolonged distal conduction delay due to peripheral nerve constriction. Electromyogr Clin Neurophysiol 24:611–617

    CAS  PubMed  Google Scholar 

  31. Kokubun N, Shahrizaila N, Hirata K, Yuki N (2013) Reversible conduction failure is distinct from neurophysiological patterns of recovery in mild demyelinating Guillain–Barre syndrome. J Neurol Sci 326:111–114

    Article  PubMed  Google Scholar 

  32. Yuki N (2001) Infectious origins of, and molecular mimicry in, Guillain–Barre and Fisher syndromes. Lancet Infect Dis 1:29–37

    Article  CAS  PubMed  Google Scholar 

  33. Hadden RD, Cornblath DR, Hughes RA, Zielasek J, Hartung HP, Toyka KV, Swan AV (1998) Electrophysiological classification of Guillain–Barre syndrome: clinical associations and outcome. Plasma Exchange/Sandoglobulin Guillain–Barre Syndrome Trial Group. Ann Neurol 44:780–788

    Article  CAS  PubMed  Google Scholar 

  34. The Italian Guillain-Barre Study Group (1996) The prognosis and main prognostic indicators of Guillain–Barre syndrome a multicentre prospective study of 297 patients. Brain 119(Pt 6):2053–2061

    Google Scholar 

  35. Kuwabara S, Asahina M, Koga M, Mori M, Yuki N, Hattori T (1998) Two patterns of clinical recovery in Guillain–Barre syndrome with IgG anti-GM1 antibody. Neurology 51:1656–1660

    Article  CAS  PubMed  Google Scholar 

  36. Ropper AH, Adelman L (1992) Early Guillain–Barre syndrome without inflammation. Arch Neurol 49:979–981

    Article  CAS  PubMed  Google Scholar 

  37. Gordon PH, Wilbourn AJ (2001) Early electrodiagnostic findings in Guillain–Barre syndrome. Arch Neurol 58:913–917

    Article  CAS  PubMed  Google Scholar 

  38. Vucic S, Cairns KD, Black KR, Chong PS, Cros D (2004) Neurophysiologic findings in early acute inflammatory demyelinating polyradiculoneuropathy. Clin Neurophysiol 115:2329–2335

    Article  PubMed  Google Scholar 

  39. Yokota T, Inaba A, Yuki N, Ichikawa T, Tanaka H, Saito Y, Kanouchi T (1996) The F wave disappears due to impaired excitability of motor neurons or proximal axons in inflammatory demyelinating neuropathies. J Neurol Neurosurg Psychiatry 60:650–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manganelli F, Pisciotta C, Iodice R, Calandro S, Dubbioso R, Ranieri A, Santoro L (2009) Case of acute motor conduction block neuropathy (AMCBN). Muscle Nerve 39:224–226

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Hosokawa.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study received institutional review board approval.

Informed consent

Informed consent was obtained from all participants according to the Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosokawa, T., Nakajima, H., Unoda, K. et al. Serial electrophysiological findings in Guillain–Barré syndrome not fulfilling AIDP or AMAN criteria. J Neurol 263, 1709–1718 (2016). https://doi.org/10.1007/s00415-016-8192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8192-2

Keywords

Navigation