Skip to main content
Log in

Copan microFLOQ® Direct Swab collection of bloodstains, saliva, and semen on cotton cloth

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The microFLOQ® Direct Swab was tested by sampling diluted blood, semen, and saliva stains deposited on cotton cloth. DNA typing was performed using the PowerPlex® Fusion 6C System by direct PCR or a modified direct PCR. Direct PCR of swabs sampled the center of a stain, compared to their respective edge samplings, and had higher profile completeness and total relative fluorescent units (RFU) for all dilutions of blood and semen stains tested. The modified direct PCR used template DNA eluted from the swab head using the Casework Direct Kit, Custom and washes either contained 1-thioglycerol (TG) additive or no TG. Modified direct PCR had mixed results for blood, saliva, and semen stains, with semen stains showing significant differences in profile completeness (5% and 1%) and total RFU (neat, 5% and 1%) with the addition of TG to the Casework Direct Reagent. No significant difference was seen in any dilution of blood or saliva stains processed with the modified direct PCR, but profile completeness and total RFU were improved overall compared to stains swabbed with cotton swabs or 4N6FLOQSwabs™. This study supports the hypothesis that the microFLOQ® Direct Swab is able to collect minute amounts of DNA from cotton cloth and may be considered as an alternate pre-screening methodology in forensic biology casework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brownlow RJ, Dagnall KE, Ames CE (2012) A comparison of DNA collection and retrieval from two swab types (cotton and nylon flocked swab) when processed using three QIAGEN extraction methods. J Forensic Sci 57(3):713–717. https://doi.org/10.1111/j.1556-4029.2011.02022.x

    Article  CAS  PubMed  Google Scholar 

  2. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. https://doi.org/10.1126/science.1177486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107(26):11971–11975. https://doi.org/10.1073/pnas.1002601107

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dadhania A, Nelson M, Caves G, Santiago R, Podini D (2013) Evaluation of Copan 4N6FLOQSwabs™ used for crime scene evidence collection. Forensic Sci Int 4(1):e336–e337. https://doi.org/10.1016/j.fsigss.2013.10.171

    Article  Google Scholar 

  5. Verdon TJ, Mitchell RJ, van Oorschot RA (2014) Swabs as DNA collection devices for sampling different biological materials from different substrates. J Forensic Sci 59(4):1080–1089. https://doi.org/10.1111/1556-4029.12427

    Article  CAS  PubMed  Google Scholar 

  6. Daley P, Castriciano S, Chernesky M, Smieja M (2006) Comparison of flocked and rayon swabs for collection of respiratory epithelial cells from uninfected volunteers and symptomatic patients. J Clin Microbiol 44(6):2265–2267. https://doi.org/10.1128/JCM.02055-05

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blaser MJ (2010) Harnessing the power of the human microbiome. Proc Natl Acad Sci U S A 107(14):6125–6126. https://doi.org/10.1073/pnas.1002112107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ambers A, Wiley R, Novroski N, Budowle B (2018) Direct PCR amplification of DNA from human bloodstains, saliva, and touch samples collected with microFLOQ((R)) swabs. Forensic Sci Int Genet 32:80–87. https://doi.org/10.1016/j.fsigen.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  9. Kemp BM, Winters M, Monroe C, Barta JL (2014) How much DNA is lost? Measuring DNA loss of short-tandem-repeat length fragments targeted by the PowerPlex 16(R) system using the Qiagen MinElute Purification Kit. Hum Biol 86(4):313–329. https://doi.org/10.13110/humanbiology.86.4.0313

    Article  PubMed  Google Scholar 

  10. Mumy KL, Findlay RH (2004) Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. J Microbiol Methods 57(2):259–268. https://doi.org/10.1016/j.mimet.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  11. Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, Valdiosera C, Garcia N, Paabo S, Arsuaga JL, Meyer M (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A 110(39):15758–15763. https://doi.org/10.1073/pnas.1314445110

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doran AE, Foran DR (2014) Assessment and mitigation of DNA loss utilizing centrifugal filtration devices. Forensic Sci Int Genet 13:187–190. https://doi.org/10.1016/j.fsigen.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  13. Garvin AM, Fritsch A (2013) Purifying and concentrating genomic DNA from mock forensic samples using Millipore Amicon filters. J Forensic Sci 58(Suppl 1):S173–S175. https://doi.org/10.1111/1556-4029.12002

    Article  CAS  PubMed  Google Scholar 

  14. Barta JL, Monroe C, Teisberg JE, Winters M, Flanigan K, Kemp BM (2014) One of the key characteristics of ancient DNA, low copy number, may be a product of its extraction. J Archaeol Sci 46:281–289. https://doi.org/10.1016/j.jas.2014.03.030

    Article  CAS  Google Scholar 

  15. Noren L, Hedell R, Ansell R, Hedman J (2013) Purification of crime scene DNA extracts using centrifugal filter devices. Investig Genet 4(1):8. https://doi.org/10.1186/2041-2223-4-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbaro A, Staiti N, Cormaci P, Saravo L (2004) DNA profiling by different extraction methods. Int Congr Ser 1261:562–564. https://doi.org/10.1016/s0531-5131(03)01647-9

    Article  CAS  Google Scholar 

  17. Templeton JE, Taylor D, Handt O, Skuza P, Linacre A (2015) Direct PCR improves the recovery of DNA from various substrates. J Forensic Sci 60(6):1558–1562. https://doi.org/10.1111/1556-4029.12843

    Article  CAS  PubMed  Google Scholar 

  18. Templeton J, Ottens R, Paradiso V, Handt O, Taylor D, Linacre A (2013) Genetic profiling from challenging samples: direct PCR of touch DNA. Forensic Sci Int 4(1):e224–e225. https://doi.org/10.1016/j.fsigss.2013.10.115

    Article  Google Scholar 

  19. Garvin AM, Fritsch A (2013) Purifying and concentrating genomic DNA from mock forensic samples using Millipore Amicon filters. J Forensic Sci 58 Suppl 1:S173–S175. https://doi.org/10.1111/1556-4029.12002

    Article  CAS  PubMed  Google Scholar 

  20. PowerPlex(R) Fusion 6C System for Use on the Applied Biosystems(R) Genetic Analyzers. (2017). https://www.promega.com/products/genetic-identity/genetic-identity-workflow/str-amplification/powerplex-fusion-6c-system/?catNum=DC2705. Accessed 5 January 2018

  21. Rapid Processing of Swabs from Casework Samples Using Casework Direct Kit, Custom. (2016). https://promega.media/-/media/files/resources/application-notes/genetic-identity/an300-rapidprocessing-of-swabs-fr-caseworksamples-using-caseworkdirectkit-custom.pdf?la=en. Accessed September 2018

  22. Hurwitz BL, U'Ren JM, Youens-Clark K (2016) Computational prospecting the great viral unknown. FEMS Microbiol Lett 363(10):fnw077–fnw077. https://doi.org/10.1093/femsle/fnw077

    Article  CAS  PubMed  Google Scholar 

  23. Thomas T, Gilbert J, Meyer F (2012) Metagenomics - a guide from sampling to data analysis. Microb Inform Exp 2(1):3. https://doi.org/10.1186/2042-5783-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  24. microFLOQ® Direct product brochure. (2017). http://products.copangroup.com/index.php/products/forensics/microfloq-direct. Accessed September 2018

  25. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 2 April 2019

  26. Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K (2016) ggplot2: elegant graphics for data analysis, vol 2018. Springer-Verlag, New York

    Book  Google Scholar 

  27. PowerQuant® System. (2015). https://www.promega.com/products/genetic-identity/genetic-identity-workflow/human-specific-dna-quantitation/powerquant-system/?catNum=PQ5002. Accessed September 2018

Download references

Acknowledgments

The authors wish to thank COPAN Italia (Brescia, Italy) and Promega (Madison, WI) for kindly providing products and technical assistance throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison J Sherier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherier, A.J., Kieser, R.E., Novroski, N.M. et al. Copan microFLOQ® Direct Swab collection of bloodstains, saliva, and semen on cotton cloth. Int J Legal Med 134, 45–54 (2020). https://doi.org/10.1007/s00414-019-02081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02081-6

Keywords

Navigation