Skip to main content
Log in

Assessment of Small-Airways Disease Using Alveolar Nitric Oxide and Impulse Oscillometry in Asthma and COPD

  • Published:
Lung Aims and scope Submit manuscript

Abstract

The contribution of the alveolar compartment to exhaled nitric oxide (alveolar nitric oxide or CANO) can be calculated as a surrogate of distal inflammation. This value should be corrected for nitric oxide produced in the conducting airways which “back-diffuses” into the alveolar compartment (Corrected CANO). Impulse oscillometry (IOS) (Nava et al., Am J Respir Crit Care Med 168:1432–1437, 2003) is used to derive values for peripheral airways resistance. Twenty-four healthy volunteers, 21 severe asthmatics, 15 mild-to-moderate asthmatics, and 24 COPD patients were assessed with spirometry, impulse oscillometry, and fractionated exhaled nitric oxide. Compared to healthy volunteers, FENO was higher in mild-to-moderate and severe asthmatics: geometric mean fold ratios of 1.91 (P = 0.02) and 2.74 (P < 0.001), respectively. However, there was no difference for mild-to-moderate versus severe asthma. Ratios for CANO were not different for severe asthma versus COPD, but both were elevated compared to that of healthy volunteers [2.64 (P < 0.001) and 3.07 (P < 0.001), respectively] and mild-to-moderate asthma [1.95 (P = 0.04) and 2.28 (P < 0.01)]. However, after correction for axial diffusion, Corrected CANO was increased in COPD compared to severe asthma (geometric mean fold ratio 1.28, P = 0.04), mild-to-moderate asthma (1.34, P < 0.01), and healthy volunteers (1.28, P = 0.02), and there was no difference between other groups. R5 and RF were reduced in healthy volunteers versus mild-to-moderate asthma (P = 0.011 and P < 0.001 respectively), severe asthma (P = 0.002 and P < 0.001), and COPD (P < 0.001 and P < 0.001). Peripheral resistance (R5–R20) was not different for healthy versus mild-to-moderate asthma but was higher in severe asthma (P < 0.001) and COPD (P < 0.001). Correlations were observed between R5–R20 versus FEF25–75 (r = 0.71, P < 0.01), CANO (r = 0.44, P < 0.01), and Corrected CANO (r = 0.24, P < 0.01). CANO and IOS provide additional information to traditional measures of spirometry and tidal nitric oxide. Previous data reporting elevated alveolar nitric oxide in severe asthma may reflect back-diffusion of nitric oxide from the conducting airways into the alveolar compartment. Corrected CANO and IOS may prove to be useful noninvasive measurements of small-airways disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, Hagan G, Knobil K, Lomas DA, MacNee W, Silverman EK, Tal-Singer R (2008) Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). Eur Respir J 31:869–873

    Article  PubMed  CAS  Google Scholar 

  2. Taylor DR (2009) Risk assessment in asthma and COPD: a potential role for biomarkers? Thorax 64:261–264

    Article  PubMed  CAS  Google Scholar 

  3. Brightling CE, Green RH, Pavord ID (2005) Biomarkers predicting response to corticosteroid therapy in asthma. Treat Respir Med 4:309–316

    Article  PubMed  CAS  Google Scholar 

  4. Sont JK, Willems LNA, Bel EH, van Krieken HJM, Vandenbroucke JP, Sterk PJ (1999) Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. Am J Respir Crit Care Med 159:1043–1051

    PubMed  CAS  Google Scholar 

  5. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, Wardlaw AJ, Pavord ID (2002) Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360:15–21

    Article  Google Scholar 

  6. American Thoracic Society (2000) Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. American Thoracic Society. Am J Respir Crit Care Med 162:2341–2351

    Google Scholar 

  7. American Thoracic Society; European Respiratory Society (2005) ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 171:912–930

    Article  Google Scholar 

  8. American Thoracic Society Workshop (2006) ATS Workshop Proceedings: Exhaled nitric oxide and nitric oxide oxidative metabolism in exhaled breath condensate: executive summary. Am J Respir Crit Care Med 173:811–813

    Article  Google Scholar 

  9. Tsoukias NM, George SC (1998) A two-compartment model of pulmonary nitric oxide exchange dynamics. J Appl Physiol 85:653–666

    PubMed  CAS  Google Scholar 

  10. Tsoukias NM, Shin HW, Wilson AF, George SC (2001) A single-breath technique with variable flow rate to characterize nitric oxide exchange dynamics in the lungs. J Appl Physiol 91:477–487

    PubMed  CAS  Google Scholar 

  11. Berry M, Hargadon B, Morgan A, Shelley M, Richter J, Shaw D, Green RH, Brightling C, Wardlaw AJ, Pavord ID (2005) Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J 25:986–991

    Article  PubMed  CAS  Google Scholar 

  12. Cohen J, Douma WR, ten Hacken NH, Vonk JM, Oudkerk M, Postma DS (2008) Ciclesonide improves measures of small airway involvement in asthma. Eur Respir J 31(6):1213–1220

    Article  PubMed  CAS  Google Scholar 

  13. Williamson PA, Menzies D, Nair A, Tutuncu A, Lipworth BJ (2009) A proof-of-concept study to evaluate the antiinflammatory effects of a novel soluble cyclodextrin formulation of nebulized budesonide in patients with mild to moderate asthma. Ann Allergy Asthma Immunol 102:161–167

    Article  PubMed  CAS  Google Scholar 

  14. Condorelli P, Shin HW, George SC (2004) Characterizing airway and alveolar nitric oxide exchange during tidal breathing using a three-compartment model. J Appl Physiol 96:1832–1842

    Article  PubMed  CAS  Google Scholar 

  15. Kerckx Y, Michils A, Van Muylem A (2008) Airway contribution to alveolar nitric oxide in healthy subjects and stable asthma patients. J Appl Physiol 104:918–924

    Article  PubMed  CAS  Google Scholar 

  16. Condorelli P, Shin HW, Aledia AS, Silkoff PE, George SC (2007) A simple technique to characterize proximal and peripheral nitric oxide exchange using constant flow exhalations and an axial diffusion model. J Appl Physiol 102:417–425

    Article  PubMed  Google Scholar 

  17. Dubois AB, Brody AW, Lewis DH, Burgess BF Jr (1956) Oscillation mechanics of lungs and chest in man. J Appl Physiol 8:587–594

    PubMed  CAS  Google Scholar 

  18. Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, Desager K, Marchal F (2003) The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 22:1026–1041

    Article  PubMed  CAS  Google Scholar 

  19. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  PubMed  CAS  Google Scholar 

  20. Borrill ZL, Houghton CM, Woodcock AA, Vestbo J, Singh D (2005) Measuring bronchodilation in COPD clinical trials. Br J Clin Pharmacol 59:379–384

    Article  PubMed  CAS  Google Scholar 

  21. Fardon TC, Burns P, Barnes ML, Lipworth BJ (2006) A comparison of 2 extrafine hydrofluoroalkane-134a-beclomethasone formulations on methacholine hyperresponsiveness. Ann Allergy Asthma Immunol 96:422–430

    Article  PubMed  CAS  Google Scholar 

  22. Shaw DE, Berry MA, Thomas M, Green RH, Brightling CE, Wardlaw AJ, Pavord ID (2007) The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. Am J Respir Crit Care Med 176:231–237

    Article  PubMed  CAS  Google Scholar 

  23. Gelb AF, Taylor CF, Nussbaum E, Gutierrez C, Schein A, Shinar CM, Schein MJ, Epstein JD, Zamel N (2004) Alveolar and airway sites of nitric oxide inflammation in treated asthma. Am J Respir Crit Care Med 170:737–741

    Article  PubMed  Google Scholar 

  24. van Veen IH, Sterk PJ, Schot R, Gauw SA, Rabe KF, Bel EH (2006) Alveolar nitric oxide versus measures of peripheral airway dysfunction in severe asthma. Eur Respir J 27:951–956

    PubMed  Google Scholar 

  25. Berry MA, Shaw D, Morgan A, Hargadon B, McKenna S, Shelley M, Green RH, Brightling CE, Wardlaw AJ, Pavord ID (2004) Association between alveolar nitric oxide concentration and broncheoalveolar lavage but not bronchial wash eosinophil count in patients with asthma. Thorax 59:ii50

    Google Scholar 

  26. Brindicci C, Ito K, Barnes PJ, Kharitonov SA (2007) Differential flow analysis of exhaled nitric oxide in patients with asthma of differing severity. Chest 131:1353–1362

    Article  PubMed  CAS  Google Scholar 

  27. Saari SM, Vidgren MT, Koskinen MO, Turjanmaa VM, Waldrep JC, Nieminen MM (1998) Regional lung deposition and clearance of 99mTc-labeled beclomethasone-DLPC liposomes in mild and severe asthma. Chest 113:1573–1579

    Article  PubMed  CAS  Google Scholar 

  28. Brindicci C, Ito K, Resta O, Pride NB, Barnes PJ, Kharitonov SA (2005) Exhaled nitric oxide from lung periphery is increased in COPD. Eur Respir J 26:52–59

    Article  PubMed  CAS  Google Scholar 

  29. Roy K, Borrill ZL, Starkey C, Hazel AL, Morris J, Vestbo J, Singh D (2007) Use of different exhaled nitric oxide multiple flow rate models in COPD. Eur Respir J 29:651–659

    Article  PubMed  CAS  Google Scholar 

  30. Borrill ZL, Houghton CM, Tal-Singer R, Vessey SR, Faiferman I, Langley SJ, Singh D (2008) The use of plethysmography and oscillometry to compare long-acting bronchodilators in patients with COPD. Br J Clin Pharmacol 65:244–252

    Article  PubMed  CAS  Google Scholar 

  31. Houghton CM, Woodcock AA, Singh D (2004) A comparison of lung function methods for assessing dose-response effects of salbutamol. Br J Clin Pharmacol 58:134–141

    Article  PubMed  CAS  Google Scholar 

  32. Van Noord JA, Smeets J, Clement J, Van de Woestijne KP, Demedts M (1994) Assessment of reversibility of airflow obstruction. Am J Respir Crit Care Med 150:551–554

    PubMed  Google Scholar 

  33. Burns GP, Gibson GJ (2002) A novel hypothesis to explain the bronchconstrictor effect of deep inspiration in asthma. Thorax 57:116–119

    Article  PubMed  CAS  Google Scholar 

  34. Kolsum U, Borrill Z, Roy K, Starkey C, Vestbo J, Houghton C, Singh D (2009) Impulse oscillometry in COPD: identification of measurements related to airway obstruction, airway conductance and lung volumes. Respir Med 103:136–143

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Lipworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, P.A., Clearie, K., Menzies, D. et al. Assessment of Small-Airways Disease Using Alveolar Nitric Oxide and Impulse Oscillometry in Asthma and COPD. Lung 189, 121–129 (2011). https://doi.org/10.1007/s00408-010-9275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-010-9275-y

Keywords

Navigation