Skip to main content
Log in

Keap1–Nrf2 signaling pathway confers resilience versus susceptibility to inescapable electric stress

  • Short Communication
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The transcription factor Keap1–Nrf2 signaling plays a key role in the oxidative stress which is involved in psychiatric disorders. In the learned helplessness (LH) paradigm, protein levels of Keap1 and Nrf2 in the prefrontal cortex and dentate gyrus of hippocampus from LH (susceptible) rats were lower than control and non-LH (resilience) rats. Furthermore, protein expressions of Keap1 and Nrf2 in the parietal cortex from major depressive disorder, schizophrenia, and bipolar disorder were lower than controls. These results suggest that Keap1–Nrf2 signaling might contribute to stress resilience which plays a key role in the pathophysiology of psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Feder A, Nestler EJ, Charney DS (2009) Psychobiology and molecular genetics of resilience. Nat Rev Neurosci 10:446–457

    Article  CAS  Google Scholar 

  2. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ (2012) Neurobiology of resilience. Nat Neurosci 15:1475–1484

    Article  CAS  Google Scholar 

  3. Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  Google Scholar 

  4. Suzuki T, Motohashi H, Yamamoto M (2013) Toward clinical application of the Keap1–Nrf2 pathway. Trends Pharmacol Sci 34:340–346

    Article  CAS  Google Scholar 

  5. Martín-de-Saavedra MD, Budni J, Cunha MP, Gómez-Rangel V, Lorrio S, Del Barrio L, Lastres-Becker I, Parada E, Tordera RM, Rodrigues AL, Cuadrado A, López MG (2013) Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology 38:2010–2022

    Article  Google Scholar 

  6. Yao W, Zhang JC, Ishima T, Dong C, Yang C, Ren Q, Ma M, Han M, Wu J, Suganuma H, Ushida Y, Yamamoto M, Hashimoto K (2016) Role of Keap1–Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci Rep 6:30659

    Article  CAS  Google Scholar 

  7. Yao W, Zhang JC, Ishima T, Ren Q, Yang C, Dong C, Ma M, Saito A, Honda T, Hashimoto K (2016) Antidepressant effects of TBE-31 and MCE-1, the novel Nrf2 activators, in inflammation model of depression. Eur J Pharmacol 793:21–27

    Article  CAS  Google Scholar 

  8. Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Han M, Wu J, Ushida Y, Suganuma H, Hashimoto K (2017) Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation. J Nutr Biochem 39:134–144

    Article  CAS  Google Scholar 

  9. Shirayama Y, Yang C, Zhang JC, Ren Q, Yao W, Hashimoto K (2015) Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. Eur Neuropsychopharmacol 25:2449–2458

    Article  CAS  Google Scholar 

  10. Yang C, Shirayama Y, Zhang JC, Ren Q, Hashimoto K (2015) Regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer resilience to inescapable stress. Int J Neuropsychopharmacol 18:pyu121

    Article  Google Scholar 

  11. Yang B, Yang C, Ren Q, Zhang JC, Chen QX, Shirayama Y, Hashimoto K (2016) Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience. Eur Arch Psychiatry Clin Neurosci 266:765–769

    Article  Google Scholar 

  12. Zhang JC, Yao W, Qu Y, Nakamura M, Dong C, Yang C, Ren Q, Ma M, Han M, Shirayama Y, Hayashi-Takagi A, Hashimoto K (2017) Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci Rep 7:7133

    Article  Google Scholar 

  13. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH (2000) The Stanley Foundation brain collection and Neuropathology Consortium. Schizophr Res 44:151–155

    Article  CAS  Google Scholar 

  14. Zhang JC, Wu J, Fujita Y, Yao W, Ren Q, Yang C, Li SX, Shirayama Y, Hashimoto K (2015) Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol 18:077

    Article  Google Scholar 

  15. Hashimoto K (2015) Inflammatory biomarkers as differential predictors of antidepressant response. Int J Mol Sci 16:7796–7801

    Article  CAS  Google Scholar 

  16. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34

    Article  CAS  Google Scholar 

  17. Zhang JC, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14:721–731

    Article  CAS  Google Scholar 

  18. Yang B, Ren Q, Zhang JC, Chen QX, Hashimoto K (2017) Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain–liver axis. Transl Psychiatry 7:e1128

    Article  CAS  Google Scholar 

  19. Bouvier E, Brouillard F, Molet J, Claverie D, Cabungcal JH, Cresto N, Doligez N, Rivat C, Do KQ, Bernard C, Benoliel JJ, Becker C (2016) Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol Psychiatry. https://doi.org/10.1038/mp.2016.144

    Article  Google Scholar 

  20. Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R (2015) Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci USA 112:3722–3727

    CAS  PubMed  Google Scholar 

  21. Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T, Hasegawa T, Yoshida T, Iyo M, Hashimoto K (2015) An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clin Psychopharmacol Neurosci 13:62–67

    Article  CAS  Google Scholar 

  22. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW (2014) Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci USA 111:15550–15555

    Article  CAS  Google Scholar 

  23. Sarlette A, Krampfl K, Grothe C, Nv Neuhoff, Dengler R, Petri S (2008) Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 67:1055–1062

    Article  CAS  Google Scholar 

  24. Imaizumi Y, Okada Y, Akamatsu W, Koike M, Kuzumaki N, Hayakawa H, Nihira T, Kobayashi T, Ohyama M, Sato S, Takanashi M, Funayama M, Hirayama A, Soga T, Hishiki T, Suematsu M, Yagi T, Ito D, Kosakai A, Hayashi K, Shouji M, Nakanishi A, Suzuki N, Mizuno Y, Mizushima N, Amagai M, Uchiyama Y, Mochizuki H, Hattori N, Okano H (2012) Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 5:35

    Article  CAS  Google Scholar 

  25. Shirai Y, Fujita Y, Hashimoto K (2012) Effects of the antioxidant sulforaphane on hyperlocomotion and prepulse inhibition deficits in mice after phencyclidine administration. Clin Psychopharmacol Neurosci 10:94–98

    Article  CAS  Google Scholar 

  26. Shirai Y, Fujita Y, Hashimoto R, Ohi K, Yamamori H, Yasuda Y, Ishima T, Suganuma H, Ushida Y, Takeda M, Hashimoto K (2015) Dietary intake of sulforaphane-rich broccoli sprout extracts during juvenile and adolescence can prevent phencyclidine-induced cognitive deficits at adulthood. PLoS ONE 10:e0127244

    Article  Google Scholar 

Download references

Acknowledgements

We thank to The Stanley Medical Research Institution (MD, USA) for providing the postmortem tissue samples. This study was supported by the Strategic Research Program for Brain Sciences from Japan Agency for Medical Research and Development, AMED (to KH), a Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science (JSPS) (to KH, 17H04243), and a Grant-in-Aid for Young Scientists (B) from JSPS (to JCZ, 15K19711). Dr. Wei Yao was supported by Ishidsu Shun Memorial Scholarship (Tokyo, Japan). Dr. Chao Dong was supported by Uehara Memorial Foundation (Tokyo, Japan). Dr. Mei Han was supported by Postdoctoral Fellowship for Overseas Researchers of JSPS (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Contributions

JCZ and KH conceived and designed this study. JCZ, WY, CD, MH, and YS performed the experiments. JCZ and KH wrote the manuscript. All the authors read and approved this manuscript.

Corresponding author

Correspondence to Kenji Hashimoto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jc., Yao, W., Dong, C. et al. Keap1–Nrf2 signaling pathway confers resilience versus susceptibility to inescapable electric stress. Eur Arch Psychiatry Clin Neurosci 268, 865–870 (2018). https://doi.org/10.1007/s00406-017-0848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-017-0848-0

Keywords

Navigation