Skip to main content

Advertisement

Log in

Effects of superovulation, in vitro fertilization, and oocyte in vitro maturation on imprinted gene Grb10 in mouse blastocysts

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Grb10 is a key imprinted gene that is suspected to have a role in the adverse outcomes of assisted reproductive technology (ART), but little is known about the effects of ART on it. Primary ART techniques, including superovulation, in vitro fertilization (IVF), and oocyte in vitro maturation (IVM), were analyzed in this study of the effects of ART on embryo quality and Grb10.

Methods

Embryo development rates were determined. Blastocyst cell number and global methylation were analyzed at the single-embryo level, together with Grb10 methylation and mRNA expression of the imprinted genes.

Results

Lower blastocyst cell number, higher genome and Grb10 CGI1 methylation, and variable mRNA expression were observed in the ART groups compared with the control group. Whether fertilization was in vivo or in vitro, the changes in the genome and Grb10 CGI1 methylation level and Grb10 and H19 expression were similar in the groups with superovulation and more significant than the IVM group.

Conclusions

These results suggest that superovulation had a greater impact than IVF or IVM on the genome and Grb10 DNA methylation level, and Grb10 and H19 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Esteves SC, Roque M, Bedoschi G, Haahr T, Humaidan P (2018) Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat Rev Urol 15(9):535–562. https://doi.org/10.1038/s41585-018-0051-8

    Article  CAS  PubMed  Google Scholar 

  2. Hwang SS, Dukhovny D, Gopal D, Cabral H, Missmer S, Diop H, Declercq E, Stern JE (2018) Health of infants after ART-treated, subfertile, and fertile deliveries. Pediatrics 142(2):e20174069. https://doi.org/10.1542/peds.2017-4069

    Article  PubMed  Google Scholar 

  3. Kawwass JF, Badell ML (2018) Maternal and fetal risk associated with assisted reproductive technology. Obstet Gynecol 132(3):763–772. https://doi.org/10.1097/aog.0000000000002786

    Article  PubMed  Google Scholar 

  4. Wang AY, Safi N, Ali F, Lui K, Li Z, Umstad MP, Sullivan EA (2018) Neonatal outcomes among twins following assisted reproductive technology: an Australian population-based retrospective cohort study. BMC Pregnancy Childbirth 18(1):320. https://doi.org/10.1186/s12884-018-1949-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huffman SR, Pak Y, Rivera RM (2015) Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Mol Reprod Dev 82(3):207–217. https://doi.org/10.1002/mrd.22463

    Article  CAS  PubMed  Google Scholar 

  6. Cortell C, Salvetti P, Joly T, Viudes-de-Castro MP (2015) Effect of different superovulation stimulation protocols on adenosine triphosphate concentration in rabbit oocytes. Zygote 23(4):507–513. https://doi.org/10.1017/s0967199414000112

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez-Davila F, Ledezma-Torres RA, Padilla-Rivas G, Del Bosque-Gonzalez AS, Gonzalez Gomez A, Bernal-Barragan H (2014) Effect of three pFSH doses on superovulation and embryo quality in goats during two breeding seasons in north-eastern Mexico. Reprod Domest Anim 49(4):e40–e43. https://doi.org/10.1111/rda.12350

    Article  CAS  PubMed  Google Scholar 

  8. O’Doherty AM, Magee DA, O’Shea LC, Forde N, Beltman ME, Mamo S, Fair T (2015) DNA methylation dynamics at imprinted genes during bovine pre-implantation embryo development. BMC Dev Biol 15:13. https://doi.org/10.1186/s12861-015-0060-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fauque P, Jouannet P, Lesaffre C, Ripoche MA, Dandolo L, Vaiman D, Jammes H (2007) Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol 7:116. https://doi.org/10.1186/1471-213x-7-116

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fortier AL, McGraw S, Lopes FL, Niles KM, Landry M, Trasler JM (2014) Modulation of imprinted gene expression following superovulation. Mol Cell Endocrinol 388(1–2):51–57. https://doi.org/10.1016/j.mce.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  11. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR (2010) Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 19(1):36–51. https://doi.org/10.1093/hmg/ddp465

    Article  CAS  PubMed  Google Scholar 

  12. Khoueiry R, Ibala-Rhomdane S, Mery L, Blachere T, Guerin JF, Lornage J, Lefevre A (2008) Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J Med Genet 45(9):583–588. https://doi.org/10.1136/jmg.2008.057943

    Article  CAS  PubMed  Google Scholar 

  13. Xie J, Wei Q, Deng H, Li G, Ma L, Zeng H (2014) Negative regulation of Grb10 interacting GYF protein 2 on insulin-like growth factor-1 receptor signaling pathway caused diabetic mice cognitive impairment. PLoS One 9(9):e108559. https://doi.org/10.1371/journal.pone.0108559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaudhry M, Wang X, Bamne MN, Hasnain S, Demirci FY, Lopez OL, Kamboh MI (2015) Genetic variation in imprinted genes is associated with risk of late-onset Alzheimer’s disease. J Alzheimer’s Dis 44(3):989–994. https://doi.org/10.3233/jad-142106

    Article  CAS  Google Scholar 

  15. Yao J, Geng L, Huang R, Peng W, Chen X, Jiang X, Yu M, Li M, Huang Y, Yang X (2017) Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction 154(3):97–105. https://doi.org/10.1530/REP-16-0480

    Article  PubMed  Google Scholar 

  16. Litzky JF, Deyssenroth MA, Everson TM, Armstrong DA, Lambertini L, Chen J, Marsit CJ (2017) Placental imprinting variation associated with assisted reproductive technologies and subfertility. Epigenetics 12(8):653–661. https://doi.org/10.1080/15592294.2017.1336589

    Article  PubMed  PubMed Central  Google Scholar 

  17. Handyside AH, Hunter S (1984) A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes. J Exp Zool 231(3):429–434. https://doi.org/10.1002/jez.1402310317

    Article  CAS  PubMed  Google Scholar 

  18. Lee YS, Thouas GA, Gardner DK (2015) Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum Reprod 30(3):543–552. https://doi.org/10.1093/humrep/deu334

    Article  CAS  PubMed  Google Scholar 

  19. Yao J, Huang Y, Huang R, Shi R, Chen P, Zhu B, Li M, Jiang X, Zheng M, Jiang Y, Yang X (2012) Epigenetic modifications and mRNA levels of the imprinted gene Grb10 in serially passaged fibroblast cells. Biochimie 94(12):2699–2705. https://doi.org/10.1016/j.biochi.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  20. Arnaud P (2003) Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Hum Mol Genet 12(9):1005–1019. https://doi.org/10.1093/hmg/ddg110

    Article  CAS  PubMed  Google Scholar 

  21. Charalambous M, Cowley M, Geoghegan F, Smith FM, Radford EJ, Marlow BP, Graham CF, Hurst LD, Ward A (2010) Maternally-inherited Grb10 reduces placental size and efficiency. Dev Biol 337(1):1–8. https://doi.org/10.1016/j.ydbio.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  22. Liu M, Bai J, He S, Villarreal R, Hu D, Zhang C, Yang X, Liang H, Slaga TJ, Yu Y, Zhou Z, Blenis J, Scherer PE, Dong LQ, Liu F (2014) Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab 19(6):967–980. https://doi.org/10.1016/j.cmet.2014.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turan N, Ghalwash MF, Katari S, Coutifaris C, Obradovic Z, Sapienza C (2012) DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease? BMC Med Genom 5:10. https://doi.org/10.1186/1755-8794-5-10

    Article  CAS  Google Scholar 

  24. Rizos D, Clemente M, Bermejo-Alvarez P, de La Fuente J, Lonergan P, Gutierrez-Adan A (2008) Consequences of in vitro culture conditions on embryo development and quality. Reprod Domest Anim 43(Suppl 4):44–50. https://doi.org/10.1111/j.1439-0531.2008.01230.x

    Article  PubMed  Google Scholar 

  25. Chu T, Dufort I, Sirard MA (2012) Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology 77(9):1928–1938. https://doi.org/10.1016/j.theriogenology.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  26. de Waal E, Yamazaki Y, Ingale P, Bartolomei MS, Yanagimachi R, McCarrey JR (2012) Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum Mol Genet. https://doi.org/10.1093/hmg/dds287

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bonakdar E, Edriss MA, Bakhtari A, Jafarpour F, Asgari V, Hosseini SM, Boroujeni NS, Hajian M, Rahmani HR, Nasr-Esfahani MH (2015) A physiological, rather than a superovulated, post-implantation environment can attenuate the compromising effect of assisted reproductive techniques on gene expression in developing mice embryos. Mol Reprod Dev 82(3):191–206. https://doi.org/10.1002/mrd.22461

    Article  CAS  PubMed  Google Scholar 

  28. Saenz-de-Juano MD, Billooye K, Smitz J, Anckaert E (2016) The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction. Mol Hum Reprod 22(6):427–441. https://doi.org/10.1093/molehr/gaw013

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant number: 31071311), and the Project of Fuzhou Science and Technology Plan of Fuzhou (Grant number: 2014-S-146).

Author information

Authors and Affiliations

Authors

Contributions

XC: protocol and project development, data management, data analysis, manuscript writing and manuscript editing. YH: protocol and project development, and data management. HH: protocol and project development, and data collection. YG: protocol and project development, and data collection. ML: data collection, protocol and project development. XJ: protocol and project development, and data management. MY: protocol and project development, and data management. XY: protocol and project development, data analysis, and manuscript editing.

Corresponding author

Correspondence to Xiaoyu Yang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Huang, Y., Huang, H. et al. Effects of superovulation, in vitro fertilization, and oocyte in vitro maturation on imprinted gene Grb10 in mouse blastocysts. Arch Gynecol Obstet 298, 1219–1227 (2018). https://doi.org/10.1007/s00404-018-4905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-018-4905-3

Keywords

Navigation