Skip to main content
Log in

A possible ambivalent role for relaxin in human myometrial and decidual cells in vitro

  • Original Article
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Based on the reported tocolytic action of the hormone relaxin (RLX) in rodents, locally produced in reproductive tissues and the corpus luteum in mammals, the present study aimed to evaluate the influence of RLX on contraction-mediating cyclooxygenases-1 and -2 (COX) and the contractile prostaglandin PGE2 in human myometrial and decidual cells. Primary cultured cells were obtained from uteri and placentas of term and preterm women undergoing elective caesarean section.

Methods

In vitro culture of primary myometrial and decidual cells, immunocytochemistry, reverse transcription and real-time PCR, Western blot, ELISA.

Results

We demonstrate for the first time an activating effect of RLX for human COX-1 and COX-2 in primary myometrial and decidual cells in vitro.

Conclusions

These effects might potentially contribute to birth-associated induction of contractions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO The world health report 2000

  2. Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, Chaiworapongsa T, Mazor M (2006) The preterm parturition syndrome. BJOG 113(Suppl 3):17–42. doi:10.1111/j.1471-0528.2006.01120.x

    CAS  PubMed  Google Scholar 

  3. Simhan HN, Caritis SN (2007) Prevention of preterm delivery. N Engl J Med 357:477–487. doi:10.1056/NEJMra050435

    Article  CAS  PubMed  Google Scholar 

  4. Hisaw HL (1926) Experimental relaxation of the pubic ligament of guinea pig. Proc Soc Exp Biol Med 23:661–663

    Google Scholar 

  5. Bani D (1997) Relaxin: a pleiotropic hormone. Gen Pharmacol 28:13–22. doi:10.1016/S0306-3623(96)00171-1

    CAS  PubMed  Google Scholar 

  6. Wilkinson TN, Speed TP, Tregear GW, Bathgate RAD (2005) Evolution of the relaxin-like peptide family. BMC Evol Biol 5:14–30. doi:10.1186/1471-2148-5-14

    Article  PubMed  CAS  Google Scholar 

  7. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Activation of orphan receptors by the hormone relaxin. Science 295:671–674. doi:10.1126/science.1065654

    Article  CAS  PubMed  Google Scholar 

  8. Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ (2006) International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev 58:7–31. doi:10.1124/pr.58.1.9

    Article  CAS  PubMed  Google Scholar 

  9. Crawford RJ, Hudson P, Shine J, Niall HD, Eddy RL, Shows TB (1984) Two human relaxin genes are on chromosome 9. EMBO J 3:2341–2345

    CAS  PubMed  Google Scholar 

  10. Bathgate RAD, Samuel CS, Burazin TCD, Layfield S, Claasz AA, Reytomas IGT (2002) Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene—novel members of the relaxin peptide family. J Biol Chem 277:1148–1157. doi:10.1074/jbc.M107882200

    Article  CAS  PubMed  Google Scholar 

  11. Bullesbach EE, Schwabe C (2000) The relaxin receptor-binding site geometry suggests a novel gripping mode of interaction. J Biol Chem 275:35276–35280. doi:10.1074/jbc.M005728200

    Article  CAS  PubMed  Google Scholar 

  12. Hansell DJ, Bryant-Greenwood GD, Greenwood FC (1991) Expression of the human relaxin H1 gene in the deciduas, trophoblast, and prostate. J Clin Endocrinol Metab 72:899–904

    Article  CAS  PubMed  Google Scholar 

  13. Liu C, Eriste E, Sutton S, Chen J, Roland B, Kuei C, Farmer N, Jörnvall H, Sillard R, Lovenberg TW (2003) Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem 278:50754–50764. doi:10.1074/jbc.M308995200

    Article  CAS  PubMed  Google Scholar 

  14. Ivell R, Einspanier A (2002) Relaxin peptides are new global players. Trends Endocrinol Metab 13:343–348. doi:10.1016/S1043-2760(02)00664-1

    Article  CAS  PubMed  Google Scholar 

  15. Scott DJ, Fu P, Shen P-J, Gundlach A, Layfield S, Riesewijk A, Tregear GW, Bathgate RAD (2005) Characterisation of the rat INSL3 receptor. Ann N Y Acad Sci 1041:13–16. doi:10.1196/annals.1282.003

    Article  CAS  PubMed  Google Scholar 

  16. Osa T, Inoue H, Okabe K (1991) Effects of porcine relaxin on contraction, membrane response and cyclicAMP content in rat myometrium in comparison with the effects of isoprenaline and forskolin. Br J Pharmacol 104:950–960

    CAS  PubMed  Google Scholar 

  17. Downing SJ, Hollingsworth M (1993) Action of relaxin on uterine contractions. J Reprod Fertil 99:275–282. doi:10.1530/jrf.0.0990275

    Article  CAS  PubMed  Google Scholar 

  18. Weiss G, Goldsmith LT, Sachdev R, Von Hagen S, Lederer K (1993) Elevated first-trimester serum relaxin concentrations in pregnant women following ovarian stimulation predict prematurity risk and preterm delivery. Obstet Gynecol 82:821–828

    CAS  PubMed  Google Scholar 

  19. Bell RJ, Eddie LW, Lester AR, Wood EC, Johnston PD, Niall HD (1988) Antenatal serum levels of relaxin in patients having preterm labour. Br J Obstet Gynaecol 95:1264–1267

    CAS  PubMed  Google Scholar 

  20. Eddie LW, Bell RJ, Lester A, Geier M, Bennett G, Johnston PD, Niall HD (1986) Radioimmunoassay of relaxin in pregnancy with an analogue of human relaxin. Lancet 1:1344–1346. doi:10.1016/S0140-6736(86)91662-4

    Article  CAS  PubMed  Google Scholar 

  21. Anwer K, Hovington JA, Sanborn BM (1989) Antagonism of contractants and relaxants at the level of intracellular calcium and phosphoinositide turnover in the rat uterus. Endocrinology 124:2995–3002

    Article  CAS  PubMed  Google Scholar 

  22. Sanborn BM (2001) Hormones and calcium: mechanisms controlling uterine smooth muscle contractile activity. Exp Physiol 86:223–237. doi:10.1113/eph8602179

    Article  CAS  PubMed  Google Scholar 

  23. Barata H, Thompson M, Zielinska W, Han YS, Mantilla CB, Prakash YS et al (2004) The role of cyclic-ADP-ribose-signaling pathway in oxytocin induced Ca2+ transients in human myometrium cells. Endocrinology 145:881–889. doi:10.1210/en.2003-0774

    Article  CAS  PubMed  Google Scholar 

  24. Sanborn BM, Qian A, Ku CY, Wen Y, Anwer K, Monga M (1995) Mechanisms regulating oxytocin receptor coupling to phospholipase C in rat and human myometrium. Adv Exp Med Biol 395:469–479

    CAS  PubMed  Google Scholar 

  25. Zhong M, Ku CY, Sanborn BM (2005) Pathways used by relaxin to regulate myometrial phospholipase C. Ann NY Acad Sci 1041:300–304. doi:10.1196/annals.1282.045

    Article  CAS  PubMed  Google Scholar 

  26. Hsu CJ, Sanborn BM (1986) Relaxin treatment alters the kinetic properties of myosin light chain kinetic properties of MLCK activity in rat myometrial cells in culture. Endocrinology 118:499–505

    Article  CAS  PubMed  Google Scholar 

  27. MacLennan AH, Grant P, Bryant-Greenwood G (1995) H-RLX-1 in vitro response of human and pig myometrium. J Reprod Med 40(10):703–706

    CAS  PubMed  Google Scholar 

  28. Garavito RM, DeWitt DL (1999) The cyclooxygenase isoforms: structural insights into the conversion of arachidonic acid to prostaglandins. Biochim Biophys Acta 1441(2–3):278–287

    CAS  PubMed  Google Scholar 

  29. Fitzpatrick FA (2004) Cyclooxygenase enzymes: regulation and function. Curr Pharm Des 10(6):577–588. doi:10.2174/1381612043453144

    Article  CAS  PubMed  Google Scholar 

  30. Reese J, Paria BC, Brown N, Zhao X, Morrow JD, Dey SK (2000) Coordinated regulation of fetal and maternal prostaglandins directs successful birth and postnatal adaptation in the mouse. Proc Natl Acad Sci USA 97(17):9759–9764. doi:10.1073/pnas.97.17.9759

    Article  CAS  PubMed  Google Scholar 

  31. Rioux N, Castonguay A (2000) The induction of cyclooxygenase-1 by a tobacco carcinogen in U937 human macrophages is correlated to the activation of NF-kappaB. Carcinogenesis 21(9):1745–1751. doi:10.1093/carcin/21.9.1745

    Article  CAS  PubMed  Google Scholar 

  32. Rauk PN, Friebe-Hoffmann U (2000) Interleukin-1β down-regulates the oxytocin receptor in cultured uterine smooth muscle cells. Am J Reprod Immunol 43:85–91. doi:10.1111/j.8755-8920.2000.430204.x

    Article  CAS  PubMed  Google Scholar 

  33. Friebe-Hoffmann U, Baston DM, Chiao JP, Winebrenner LD, Krüssel JS, Hoffmann TK, Hirchenhain J, Rauk PN (2007) The effect of relaxin on the oxytocin receptor in human uterine smooth muscle cells. Regul Pept 138:74–81. doi:10.1016/j.regpep.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  34. Delvin EE, Arabian A, Glorieux FH, Mamer OA (1985) In vitro metabolism of 25-hydroxy-cholecalciferol by isolated cells from human decidua. J Clin Endocrinol Metab 60(5):880–885

    Article  CAS  PubMed  Google Scholar 

  35. Longo M, Jain V, Vedernikov YP, Garfield RE, Saade GR (2003) Effects of recombinant human relaxin on pregnant rat uterine artery and myometrium in vitro. Am J Obstet Gynecol 188(6):1468–1474. doi:10.1067/mob.2003.454 (discussion 1474–1476)

    Article  CAS  PubMed  Google Scholar 

  36. Vogel I, Grønbaek H, Uldbjerg N, Forman A (2004) The influence of amphotericin B and neomycin on the effect of human relaxin-2 on foetal membranes and isolated myometrium. Basic Clin Pharmacol Toxicol 94(3):144–150

    Article  CAS  PubMed  Google Scholar 

  37. Driver PM, Kilby MD, Walker EA, Hewison M, Stewart PM (2001) Expression of 11β-hydroxysteroid dehydrogenase isozymes and corticosteroid hormone receptors in primary cultures of human trophoblast and placental bed biopsies. Mol Hum Reprod 7:357–363. doi:10.1093/molehr/7.4.357

    Article  CAS  PubMed  Google Scholar 

  38. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thio-cyanate–phenol–chloroform extraction. Anal Biochem 162(1):156–159. doi:10.1016/0003-2697(87)90021-2

    Article  CAS  PubMed  Google Scholar 

  39. Kienzle N, Young D, Zehntner S, Bushell G, Sculley TB (1996) DNase I treatment is a prerequisite for the amplification of cDNA from episomal-based genes. Biotechniques 20(4):612–616

    CAS  PubMed  Google Scholar 

  40. Can A, Tekelioglu M, Baltaci A (1995) Expression of desmin and vimentin intermediate filaments in human-decidual cells during first trimester pregnancy. Placenta 16:261–275. doi:10.1016/0143-4004(95)90113-2

    Article  CAS  PubMed  Google Scholar 

  41. Goldsmith LT, Weiss G, Steinetz BG (1995) Relaxin and its role in pregnancy. Endocrinol Metab Clin North Am 24:171–186

    CAS  PubMed  Google Scholar 

  42. Telgmann G, Gellersen B (1998) Marker genes of decidualization: activation of the decidual prolactin gene. Hum Reprod Update 4:472–479. doi:10.1093/humupd/4.5.472

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen BT, Yang L, Sanborn BM, Dessauer CW (2003) Phosphoinositide 3-kinase activity is required for biphasic stimulation of cyclic adenosine 3′,5′-monophosphate by relaxin. Mol Endocrinol 17(6):1075–1084. doi:10.1210/me.2002-0284

    Article  CAS  PubMed  Google Scholar 

  44. Keirse MJ (2003) The history of tocolysis. BJOG 110(Suppl 20):94–97

    PubMed  Google Scholar 

  45. Kuznetsova LA, Fedin AN, Chistiakova OV, Plesneva SA, Shpakov AO, Pertseva MN (2006) Involvement of adenylyn cyclase signaling mechanisms in relaxing effect of relaxin and insulin on the rat uterus, trachea and human myometrium. Ross Fiziol Zh Im I M Sechenova 92(7):863–871

    CAS  PubMed  Google Scholar 

  46. Phaneuf S, Europe-Finner GN, Carrasco MP, Hamilton CH, López Bernal A (1995) Oxytocin signalling in human myometrium. Adv Exp Med Biol, pp 453–467

  47. Fuchs AR, Fuchs F, Husslein P (1982) Oxytocin receptors and human parturition: a dual role for oxytocin in the initiation of labor. Science 215:1396–1398. doi:10.1126/science.6278592

    Article  CAS  PubMed  Google Scholar 

  48. Chibbar R, Miller FD, Mitchell BF (1993) Synthesis of oxytocin in amnion, chorion and decidua may influence the timing of human parturition. J Clin Invest 91:185–192. doi:10.1172/JCI116169

    Article  CAS  PubMed  Google Scholar 

  49. Gross GA, Imamura T, Luedke C, Vogt SK, Olson LM, Nelson DM, Sadovsky Y, Muglia LJ (1998) Opposing actions of prostaglandins and oxytocin determine the onset of murine labor. Proc Natl Acad Sci USA 95(20):11875–11879. doi:10.1073/pnas.95.20.11875

    Article  CAS  PubMed  Google Scholar 

  50. Zhao B, Koon D, Curtis AL, Soper J, Bethin KE (2007) Identification of 9 uterine genes that are regulated during mouse pregnancy and exhibit abnormal levels in the cyclooxygenase-1 knockout mouse. Reprod Biol Endocrinol 5:28. doi:10.1186/1477-7827-5-28

    Article  PubMed  CAS  Google Scholar 

  51. Sparey C, Robson SC, Bailey J, Lyall F, Europe-Finner GN (1999) The differential expression of myometrial connexin-43, cyclooxygenase-1 and -2, and Gsa proteins in the upper and lower segments of the human uterus during pregnancy and labor. J Clin Endocrinol Metab 1999(84):1705–1710. doi:10.1210/jc.84.5.1705

    Article  Google Scholar 

  52. Winchester SK, Imamura T, Gross GA, Muglia LM, Vogt SK, Wright J, Watanabe K, Tai HH, Muglia LJ (2002) Coordinate regulation of prostaglandin metabolism for induction of parturition in mice. Endocrinology 143(7):2593–2598. doi:10.1210/en.143.7.2593

    Article  CAS  PubMed  Google Scholar 

  53. Gupta DK, Sato TA, Keelan JA, Marvin KW, Mitchell MD (2001) Expression of prostaglandin H synthase-1 and -2 in murine intrauterine and gestational tissues from mid pregnancy until term. Prostaglandins Other Lipid Mediat 66(1):17–25. doi:10.1016/S0090-6980(01)00122-8

    Article  CAS  PubMed  Google Scholar 

  54. Molnár M, Rigó J, Romero R, Hertelendy F (1999) Oxytocin activates mitogen-activated protein kinase and up-regulates cyclooxygenase-2 and prostaglandin production in human myometrial cells. Am J Obstet Gynecol 181:42–49. doi:10.1016/S0002-9378(99)70434-5

    Article  PubMed  Google Scholar 

  55. Belt AR, Baldassare JJ, Molnár M, Romero R, Hertelendy F (1999) The nuclear factor NF-κB mediates interleukin-1β-induced expression of cycloxygenase-2 in human myometrial cells. Am J Obstet Gynecol 181:359–366. doi:10.1016/S0002-9378(99)70562-4

    Article  CAS  PubMed  Google Scholar 

  56. Rauk PN, Chiao JP (2000) Interleukin-1 stimulates human uterine prostaglandin production through induction of cyclooxygenase-2 expression. Am J Reprod Immunol 43(3):152–159. doi:10.1111/j.8755-8920.2000.430304.x

    Article  CAS  PubMed  Google Scholar 

  57. Friebe-Hoffmann U, Chiao JP, Rauk PN (2001) Effect of IL-1beta and IL-6 on oxytocin secretion in human uterine smooth muscle cells. Am J Reprod Immunol 46(3):226–231. doi:10.1034/j.1600-0897.2001.d01-6.x

    Article  CAS  PubMed  Google Scholar 

  58. Friebe-Hoffmann U, Baston DM, Hoffmann TK, Chiao JP, Rauk PN (2007) The influence of interleukin-1beta on oxytocin signalling in primary cells of human decidua. Regul Pept 142(3):78–85. doi:10.1016/j.regpep.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  59. Macchiarini F, Manz MG, Palucka AK, Shultz LD (2005) Humanized mice: are we there yet? J Exp Med 202:1307–1311. doi:10.1084/jem.20051547

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the German Research Foundation (DFG Fr 1402/3–1) for financial support.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunja M. Baston-Büst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baston-Büst, D.M., Hess, A.P., Hirchenhain, J. et al. A possible ambivalent role for relaxin in human myometrial and decidual cells in vitro. Arch Gynecol Obstet 280, 961–969 (2009). https://doi.org/10.1007/s00404-009-1046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-009-1046-8

Keywords

Navigation