Skip to main content

Advertisement

Log in

By the grace of peeling: the brace function of the stratum corneum in the protection from photo-induced keratinocyte carcinogenesis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Chemical peeling with salicylic acid in polyethylene glycol vehicle (SA-PEG) is a safe and effective method for the rejuvenation of photo-damaged skin. The procedure removes photo-damaged stratum corneum, which consists of immature, fragile cornified envelopes (CEs) and stimulates the reconstruction of the stratum corneum with mature, rigid CEs. In UVB-irradiated hairless mice this procedure, which affects the stratum corneum only, suppresses skin tumor development. In addition, chemical peeling with SA-PAG suppresses p53 expression in mice and normalizes keratinocyte differentiation in both mice and humans. The stratum corneum functions as a barrier against physical and chemical insult and various infectious agents. Here, we hypothesize on a new function of the stratum corneum: a brace function that structurally protects keratinocytes from atypical differentiation or disordered proliferation. Although the precise mechanism remains to be elucidated, there is definite value to be gained from further investigation. This review discusses basic information about chemical peeling with SA-PEG, looks at its action on photo-induced tumor suppression, and proposes a new function for the stratum corneum in keratinocyte proliferation/differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Box

Similar content being viewed by others

References

  1. Arita K, Akiyama M, Tsuji Y, Iwao F, Kodama K, Shimizu H (2003) Squamous cell carcinoma in a patient with non-bullous congenital ichthyosiform erythroderma. Br J Dermatol 148:367–369

    Article  PubMed  CAS  Google Scholar 

  2. Bair W 3rd, Hart N, Einspahr J, Liu G, Dong Z, Alberts D, Bowden GT (2002) Inhibitory effects of sodium salicylate and acetylsalicylic acid on UVB-induced mouse skin carcinogenesis. Cancer Epidemiol Biomarkers Prev 11:1645–1652

    PubMed  CAS  Google Scholar 

  3. Berg RJW, van Kranen HF, Rebel HG et al (1996) Early p 53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p 53 protein in clusters of preneoplastic epidermal cells. Proc Natl Acad Sci USA 93:274–278

    Article  PubMed  CAS  Google Scholar 

  4. Boon T, Cerottini JC, van den Eynde B, van der Bruggen P, van Pel A (1994) Tumour antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365

    Article  PubMed  CAS  Google Scholar 

  5. Brody HJ, Hailey CW (1986) Medium-depth chemical peeling of the skin: a variation of superficial chemosurgery. J Dermatol Surg Oncol 12:1268–1275

    PubMed  CAS  Google Scholar 

  6. Brody HJ (eds) (1992) Chemical peeling, 1st edn. Mosby, St. Louis, pp 75–97

  7. Chernov MV, Stark GR (1997) The p 53 activation and apoptosis induced by DNA damage are reversibly inhibited by salicylate. Oncogene 14:2503–2510

    Article  PubMed  Google Scholar 

  8. Dainichi T, Koga T, Furue M, Ueda S, Isoda M (2003) Paradoxical effect of trichloroacetic acid (TCA) on ultraviolet B-induced skin tumor formation. J Dermatol Sci 31:229–231

    Article  PubMed  CAS  Google Scholar 

  9. Dainichi T, Ueda S, Isoda M, Koga T, Kinukawa N, Nose Y, Ishii K, Amano S, Horii I, Furue M (2003) Chemical peeling with salicylic acid in polyethylene glycol vehicle suppresses skin tumour development in hairless mice. Br J Dermatol 148:906–912

    Article  PubMed  CAS  Google Scholar 

  10. Dainichi T, Amano S, Matsunaga Y, Iriyama S, Hirao T, Hariya T, Hibino T, Katagiri C, Takahashi M, Ueda S, Furue M (2006) Chemical peeling by SA-PEG remodels photo-damaged skin: suppressing p 53 expression and normalizing keratinocyte differentiation. J Invest Dermatol 126:416–421

    Article  PubMed  CAS  Google Scholar 

  11. de Gruijl FR, Sterenborg HJCM, Forbes PD et al (1993) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 53:53–60

    PubMed  Google Scholar 

  12. de Gruijl FR (2002) p 53 mutations as a marker of skin cancer risk: comparison of UVA and UVB effects. Exp Dermatol 11(Suppl 1):37–39

    Article  PubMed  Google Scholar 

  13. Fears TR, Scotto J, Schneiderman MA (1977) Mathematical models of age and ultraviolet effects on the incidence of skin cancer among Whites in the United States. Am J Epidemiol 105:420–427

    PubMed  CAS  Google Scholar 

  14. Green AE, Hedinger RA (1978) Models relating ultraviolet light and non-melanoma skin cancer incidence. Photochem Photobiol l28:283–291

    Article  Google Scholar 

  15. Hirao T, Denda M, Takahashi M (2001) Identification of immature cornified envelopes in the barrier-impaired epidermis by characterization of their hydrophobicity and antigenicities of the components. Exp Dermatol 10:35–44

    Article  PubMed  CAS  Google Scholar 

  16. Hohl D (1990) Cornified cell envelope. Dermatologica 180:201–211

    PubMed  CAS  Google Scholar 

  17. Hong JT, Kim EJ, Ahn KS, Jung KM, Yun YP, Park YK, Lee S H (2001) Inhibitory effect of glycolic acid on ultra violet-induced skin tumorigenesis in SKH-1 hairless mice and its mechanism of action. Mol Carcinog 31:152–160

    Article  PubMed  CAS  Google Scholar 

  18. Imayama S, Ueda S, Isoda M (2000) Histologic changes in the skin of hairless mice following peeling with salicylic acid. Arch Dermatol 36:1390–1395

    Article  Google Scholar 

  19. Ishida-Yamamoto A, Iizuka H (1988) Structural organization of cornified cell envelopes and alterations in inherited skin disorders. Exp Dermatol 7:1–10

    Article  Google Scholar 

  20. Isoda M, Ueda S, Imayama S, Tsukahara K (2001) New formulation of chemical peeling agent: histological evaluation in sun damaged skin model in hairless mice. J Dermatol Sci 27(suppl 1):S60–S67

    Article  PubMed  CAS  Google Scholar 

  21. Jansen B, Heere-Ress E, Schlagbauer-Wadl H et al (1999) Farnesylthiosalicylic acid inhibits the growth of human Merkel cell carcinoma in SCID mice. J Mol Med 77:792–797

    Article  PubMed  CAS  Google Scholar 

  22. Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA, Leffell DJ, Tarone RE, Brash DE (1996) Frequent clones of p 53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA 93:14025–14029

    Article  PubMed  CAS  Google Scholar 

  23. Kligman D, Kligman AM (1988) Salicylic acid peels for the treatment of photoaging. Dermatol Surg 24:325–328

    Article  Google Scholar 

  24. Krasagakis K, Ioannidou DJ, Stephanidou M, Manios A, Panayiotides JG, Tosca AD (2003) Early development of multiple epithelial neoplasms in Netherton syndrome. Dermatology 207:182–184

    Article  PubMed  CAS  Google Scholar 

  25. Leffel DJ (2000) The scientific basis of skin cancer. J Am Acad Dermatol 42:S18–S22

    Article  Google Scholar 

  26. Madison KC (2003) Barrier function of the skin: “la raison d’étre” of the epidermis. J Invest Dermatol 121:231–241

    Article  PubMed  CAS  Google Scholar 

  27. Mallipeddi R (2002) Epidermolysis bullosa and cancer. Clin Exp Dermatol 27:616–623

    Article  PubMed  CAS  Google Scholar 

  28. Matsunaga Y, Ogura Y, Ehama R, Amano S, Nishiyama T, Tagami H (2007) Establishment of a mouse skin model of the lichenification in human chronic eczematous dermatitis. Br J Dermatol 156:884–891

    Article  PubMed  CAS  Google Scholar 

  29. Mc Gregor JM, Yu CC, Dublin EA, Levison DA, Mac Donald DM (1992) Aberrant expression of p 53 tumour-suppressor protein in non-melanoma skin cancer. Br J Dermatol 127:463–469

    Article  CAS  Google Scholar 

  30. Michel S, Schmidt R, Shroot B, Reichert U (1998) Morphological and biochemical characterization of the cornified envelopes from human epidermal keratinocytes of different origin. J Invest Dermatol 91:11–15

    Article  Google Scholar 

  31. Nemes Z, Steinert PM (1999) Bricks and mortar of the epidermal barrier. Exp Mol Med 31:5–19

    PubMed  CAS  Google Scholar 

  32. Orengo IF, Gerguis J, Phillips R, Guevara A, Lewis AT, Black HS (2002) Celecoxib, a cyclooxygenase 2 inhibitor as a potential chemopreventive to UV-induced skin cancer: a study in the hairless mouse model. Arch Dermatol 138:751–755

    Article  PubMed  CAS  Google Scholar 

  33. Park KS, Kim HJ, Kim EJ, Nam KT, Oh JH, Song CW, Jung HK, Kim DJ, Yun YW, Kim HS, Chung SY, Cho DH, Kim BY, Hong JT (2002) Effect of glycolic acid on UVB-induced skin damage and inflammation in guinea pigs. Skin Pharmacol Appl Skin Physiol 15:236–245

    Article  PubMed  CAS  Google Scholar 

  34. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  PubMed  CAS  Google Scholar 

  35. Scotto J, Fears TR (1983) Estimating increases in skin cancer morbidity due to increases in ultraviolet radiation exposure. Cancer Invest 1:119–126

    Article  PubMed  Google Scholar 

  36. Swinehart JM (1992) Salicylic acid ointment peeling of the hands and forearms. Effective nonsurgical removal of pigmented lesions and actinic damage. J Dermatol Surg Oncol 18:495–498

    PubMed  CAS  Google Scholar 

  37. Thompson EJ, Gupta A, Vielhauer GA, Regan JW, Bowden GT (2001) The growth of malignant keratinocytes depends on signaling through the PGE (2) receptor EP1. Neoplasia 3:402–410

    Article  PubMed  CAS  Google Scholar 

  38. Tiano HF, Loftin CD, Akunda J, Lee CA, Spalding J, Sessoms A, Dunson DB, Rogan EG, Morham SG, Smart RC, Langenbach R (2002) Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res 62:3395–3401

    PubMed  CAS  Google Scholar 

  39. Ueda S, Mitsugi K, Ichige K, Yoshida K, Sakuma T, Ninomiya S, Sudou T (2002) New formulation of chemical peeling agent: 30% salicylic acid in polyethylene glycol absorption and distribution of 14 C-salicylic acid in polyethylene glycol applied topically to skin of hairless mice. J Dermatol Sci 28:211–218

    Article  PubMed  CAS  Google Scholar 

  40. Watt FM, Jordan PW, O'Neill CH (1988) Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci USA 85:5576–5580

    Article  PubMed  CAS  Google Scholar 

  41. Weirich EG (1975) Dermatopharmacology of salicylic acid. I. Range of dermatotherapeutic effects of salicylic acid. Dermatologica 51:268–273

    Article  Google Scholar 

  42. Yano S, Komine M, Fujimoto M, Okochi H, Tamaki K (2004) Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J Invest Dermatol 122:783–790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Takeshi Horio, the president of the 6th Annual Meeting of the Japanese Photoaging Research Society in 2005, who provided us with the opportunity to present our work at the Society’s meeting. We thank all our colleagues whose work is covered in this review.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruki Dainichi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dainichi, T., Ueda, S., Furue, M. et al. By the grace of peeling: the brace function of the stratum corneum in the protection from photo-induced keratinocyte carcinogenesis. Arch Dermatol Res 300 (Suppl 1), 31–38 (2008). https://doi.org/10.1007/s00403-007-0802-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-007-0802-5

Keywords

Navigation