Skip to main content

Advertisement

Log in

p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract.

Rat neonatal ventricular myocytes exposed to simulated ischaemia and reperfusion (SI/R) were used as an in vitro model to delineate the role(s) of extracellular signal–regulated kinase (ERK), p38 and c–Jun NH2–terminal protein kinase (JNK), as well as PKB in apoptosis. Exposure of the myocytes to SI (simulated ischaemia – energy depletion induced by KCN and 2-deoxy-D–glucose) reduced cell viability, as measured by the 3–[4,5–dimethylthiazol–2–yl]–2,5–diphenyl tetrazolium bromide (MTT) assay, and stimulated apoptosis as evidenced by caspase–3 activation and poly(ADP–ribose) polymerase (PARP) cleavage. However, morphological evidence of increased apoptosis, detected by staining with Hoechst 33342, was only seen in response to reperfusion. This suggests that although ischaemic conditions are sufficient to induce cellular markers of apoptosis (PARP cleavage and caspase–3 activation), reperfusion is required to complete the apoptotic pathway in these cells. Furthermore, SI resulted in a rapid, strong, biphasic activation of p38 concomitant with a weak and transient activation of the two ERK isoenzymes, p42/p44–MAPK. Reperfusion for 5 minutes resulted in a strong phosphorylation of p42/p44–MAPK, while no additional p38 activation was seen at this stage. On the other hand, p46/p54–MAPK (JNK) was phosphorylated in response to 5 minutes of reperfusion only and not during SI alone. A peak of PKB/Akt (Ser473) activity was seen within 5 minutes of exposure to SI, whereas PKB/Akt (Thr308) phosphorylation remained at the baseline level. Both PKB/Akt phosphorylation sites (Ser473 and Thr308) were phosphorylated after 5 minutes of reperfusion. Inhibition of PI–3–kinase activity, using wortmannin, decreased phosphorylation on both sites during SI. However, only SI/R-induced PKB/Akt phosphorylation on Thr308 was reduced by wortmannin. Myocytes pre–treated with SB203580, a p38–inhibitor, displayed a significant increase in cell viability [63.67 ± 1.85 to 84.33 ± 4.8% (p < 0.05)] and attenuation of the apoptotic index during SI/R [22.6 ± 2.94% to 9 ± 0.43% (p < 0.001)], while SP600125, a specific JNK inhibitor, caused a significant increase in caspase–3 activation [1.66 ± 0.03 fold to 2.56 ± 0.27 fold (p < 0.001)] and apoptotic index [22.6 ± 2.94% to 32.75 ± 6.13% (p < 0.05)]. However, PD98059, an ERK inhibitor, failed to affect apoptosis during SI/R. Inhibition of PI–3–kinase prevented the increase in mitochondrial viability usually observed during reperfusion. Interestingly, wortmannin caused a significant increase in PARP cleavage during reperfusion, but had no effect on caspase–3 activation or the apoptotic index. Our results suggest that p38 has a pro–apoptotic role while JNK phosphorylation is protective in our cell model and that these kinases act via caspase–3 to prevent or promote cell survival in response to SI/R–induced injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe J, Baines CP, Berk BC (2000) Role of mitogen-activated protein kinases in ischemia and reperfusion injury. Circ Res 86:607–609

    CAS  PubMed  Google Scholar 

  2. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15 (23):6541–6551

    CAS  PubMed  Google Scholar 

  3. Anderson KE, Coadwell J, Stephens LR, Hawkins PT (1998) Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol 8:684–691

    Article  CAS  PubMed  Google Scholar 

  4. Anversa P, Kajstura J (1998) Myocyte cell death in the diseased heart. Circ Res 82:1231–1233

    CAS  PubMed  Google Scholar 

  5. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH (1996) Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart: p38/ERK mitogen- activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79:162–173

    CAS  PubMed  Google Scholar 

  6. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signalling pathway by transcriptiondependent and -independent mechanisms. Science 289:1358–1362

    Article  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 71:248–254

    Google Scholar 

  8. Chaudhary PM, Eby MT, Jasmin A, Hood L (1999) Activation of c-Jun N-terminal kinase/stress-activated protein kinase pathway by overexpression of caspase-8 and its homologs. J Biol Chem 274:19211–19219

    Article  CAS  PubMed  Google Scholar 

  9. Clerk A, Sugden PH (1998) The p38- MAPK inhibitor, SB203580, inhibits cardiac stress-activated protein kinase/c-Jun N-terminal kinases (SAPKs/JNKs). FEBS Lett 426:93–96

    CAS  PubMed  Google Scholar 

  10. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gutoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  PubMed  Google Scholar 

  11. Del Peso L, Gonzales-Gracia M, Page C, Herrera R, Nunez G (1997) Interleukin-3 induced phosphorylation of BAD through protein kinase Akt. Science 278:687–689

    Article  CAS  PubMed  Google Scholar 

  12. Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA (2002) Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362:561–571

    Article  CAS  PubMed  Google Scholar 

  13. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92:7686–7689

    CAS  PubMed  Google Scholar 

  14. Edoute Y, van der Merwe E, Sanan D, Kotze JCN, Steinmann C, Lochner A (1983) Normothermic ischemic cardiac arrest of the isolated working heart. Circ Res 53:663–678

    CAS  PubMed  Google Scholar 

  15. Fiordaliso F, Leri A, Cesselli D, limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J (2001) Hyperglycemia activates p53 and p53-regulated genes leading to myocyte death. Diabetes 50 (10):2363– 2375

    CAS  PubMed  Google Scholar 

  16. Frodin M, Gammeltoft S (1999) Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151:65–77

    CAS  PubMed  Google Scholar 

  17. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667

    CAS  PubMed  Google Scholar 

  18. Gomez LA, Alekseev AE, Aleksandrova LA, Brady PA, Terzic A (1997) Use of MTT assay in adult ventricular cardiomyocytes to assess viability: Effects of Adenosine and Potassium on cellular survival. J Mol Cell Cardiol 29:1255–1266

    Article  CAS  PubMed  Google Scholar 

  19. Gottlieb RA, Engler RL (1999) Apoptosis in myocardial ischemia-reperfusion. Ann NY Acad Sci 874:412–426

    CAS  PubMed  Google Scholar 

  20. Han H, Wang, H, Long H, Nattel S, Wang Z (2001) Oxidative preconditioning and apoptosis in L-cells. Roles of protein kinase B and mitogen-activated protein kinases. J Biol Chem 276:26357–26364

    Article  CAS  PubMed  Google Scholar 

  21. He H, Li H-L, Lin A, Gotllieb RA (1999) Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ 6:987–991

    Article  CAS  PubMed  Google Scholar 

  22. Hill MM, Andjelkovic M, Brazil DP, Ferrari S, Fabbro D, Hemmings BA (2001) Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase. J Biol Chem 276:25643–25646

    CAS  PubMed  Google Scholar 

  23. Hreniuk D, Garay M, Garrde W, Monia BP, McKay RA, Ciof. CL (2001) Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischaemia/reperfusion in rat cardiac myocytes. Mol Pharmacol 59:867–874

    CAS  PubMed  Google Scholar 

  24. Kajstura JW, Cheng K, Reiss WA, Clark EH, Sonnenblick S, Krajewski JC, Reed G, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107

    CAS  PubMed  Google Scholar 

  25. Kostin S, Pool L, Elsässer A, Hein S, Drexler HCA, Arnon E, Hayakawa Y, Zimmerman R, Bauer E, Klövekorn W-P, Schaper J (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724

    CAS  PubMed  Google Scholar 

  26. Leppa S, Saffrich R, Ansorge W, Bohmann D (1998) Differential regulation of cJun by ERK and JNK during PC12 cell differentiation. EMBO J 17:4404–4413

    Article  CAS  PubMed  Google Scholar 

  27. Lowry AO, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein determination with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  28. Mackay K, Mochly-Rosen D (2000) Involvement of p38 mitogen-activated protein kinase phosphatase in protecting neonatal rat cardiac myocytes from ischemia. J Mol Cell Cardiol 32:1585–1588

    Article  CAS  PubMed  Google Scholar 

  29. Mansour SJ, Matten WT, Herman AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970

    CAS  PubMed  Google Scholar 

  30. Marais E, Genade S, Huisamen B, Strijdom JG, Moolman JA, Lochner A (2001) Activation of p38-MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38-MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol 33:769–778

    CAS  PubMed  Google Scholar 

  31. Michel MC, Li Y, Heusch G (2001) Mitogen- activated protein kinases in the heart. Naunyn-Schmiedeberg’s Arch Pharmacol 363:245–266

    CAS  Google Scholar 

  32. Minamino T, Yuiri T, Papst PJ, Chan ED, Johnson GL, Terada N (1999) MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived cardiac myocytes. Proc Natl Acad Sci USA 26:15127–15132

    Google Scholar 

  33. Nakano A, Cohen MV, Critz S, Downey JM (2000) SB203580, an inhibitor of p38 MAPK, abolishes infarct-limiting effects of ischemic preconditioning in isolated rabbit hearts. Basic Res Cardiol 95:466– 471

    Article  CAS  PubMed  Google Scholar 

  34. Obata T, Brown GE, Yaffe MB (2000) MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med 28:N67–N77

    Article  CAS  PubMed  Google Scholar 

  35. Park WH, Seol JG, Kim ES, Hyun JM, Jung CW, Lee CC, Binderup L, Koefer HP, Kim BK, Lee YY (2000) Induction of apoptosis by vitamin D3 analogue EB1089 in NCIH929 myeloma cells via activation of caspase- 3 and p38-MAPK. British J Haem 109:576–583

    Article  CAS  Google Scholar 

  36. Pinson A (1990) Neonatal rat heart muscle cells. In: Piper HM (ed) Cell culture techniques in heart and vessel research. Springer Berlin Heidelberg New York London Paris Tokyo Hong Kong, pp 20–35

  37. Punn A, Mockridge JW, Farooqui S, Marber MS, Heads RJ (2000) Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes. Biochem J 350:891–899

    Article  CAS  PubMed  Google Scholar 

  38. Sato M, Cordis GA, Maulik N, Das DK (2000) SAPKs regulation of ischemic preconditioning. Am J Physiol Heart Circ Physiol 279:H901–H907

    CAS  PubMed  Google Scholar 

  39. Saurin AT, Martin JC, Heads RJ, Foley C, Mockridge JW, Wright MJ, Wang Y, Marber S (2000) The role of differential activation of p38 mitogen activated protein kinase in preconditioned ventricular myocytes. Faseb J 14:2237–2246

    Article  CAS  PubMed  Google Scholar 

  40. Schaper J, Elsässer A, Kostin S (1999) The role of cell death in heart failure. Circ Res 85:867–869

    CAS  PubMed  Google Scholar 

  41. Schaper J, Lorenz-Meyer S, Suzuki K (1999) The role of apoptosis in dilated cardiomyopathy. Herz 24:219–224

    CAS  PubMed  Google Scholar 

  42. Scheid MP, Duronio V (1998) Dissociation of cytokine-induced phophorylation of BAD and activation of PKB/Akt: involvement of MEK upstream of BAD phosphorylation. Proc Natl Acad Sci USA 95:7439–7444

    Article  CAS  PubMed  Google Scholar 

  43. Shiraishi J, Tatsumi T, Keira N, Akashi K, Mano A, Yamanak S, Matabo S, Asayama J, Yaoi T, Fushiki S, Fliss H, Nakagawa M (2001) Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. Am J Physiol Heart Physiol 281:H1637–H1647

    CAS  Google Scholar 

  44. Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55:690–700

    Article  CAS  PubMed  Google Scholar 

  45. Torcia M, De Chiara G, Nencioni L, Ammendola S, Labardi D, Lucibello M, Sharba PD (2001) Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem 276:39027–39036

    Article  CAS  PubMed  Google Scholar 

  46. Vaishnav D, Jambal P, Reusch JE, Pugazhenthi S (2003) SP600125, an inhibitor of c-jun N-terminal kinase, activates CREB by a p38 MAPK-mediated pathway. Biochem Biophys Res Commun 307 (4):855–860

    CAS  PubMed  Google Scholar 

  47. Versteeg HH, Evertzen MWA, van Deventer SJH, Peppelenbosch MP (2000) The role of phosphatidylinositide-3-kinase in basal mitogen-activated protein kinase activity in cell survival. FEBS Letters 465:69–73

    Article  CAS  PubMed  Google Scholar 

  48. Victor P, Bester AJ, Lochner A (1987) A sensitive and rapid method for separating adenine nucleotide and creatine phosphate by ion-pair-reversed-phased highperformance liquid chromatography. J Chromatogr 389:339–344

    CAS  PubMed  Google Scholar 

  49. Wang Y, Huang S, Sah VP, Ross J, Brown JH, Han J, Chien KR (1998) Cardiac muscle cell hyperthrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273:2161–2168

    Article  CAS  PubMed  Google Scholar 

  50. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR (1998) Cardiac hyperthrophy induced by mitogen-activated protein kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle. J Biol Chem 273:5423–5426

    Article  CAS  PubMed  Google Scholar 

  51. Weinbrenner C, Liu GS, Cohen MV, Downey JM (1997) Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J Mol Cell Cardiol 29:2823–2391

    Article  Google Scholar 

  52. Yue T-L, Wang C, Gu J-L, Ma X-L, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenationinduced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lochner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelbrecht, AM., Niesler, C., Page, C. et al. p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res Cardiol 99, 338– 350 (2004). https://doi.org/10.1007/s00395-004-0478-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-004-0478-3

Key words

Navigation