Skip to main content

Advertisement

Log in

Berberis lycium fruit extract attenuates oxi-inflammatory stress and promotes mucosal healing by mitigating NF-κB/c-Jun/MAPKs signalling and augmenting splenic Treg proliferation in a murine model of dextran sulphate sodium-induced ulcerative colitis

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

There is a growing interest in developing phytomolecule-based therapies for the management of inflammatory disorders owing to rising cost of treatments and unwarranted effects. The present work attempted to assess the efficacy and mechanisms of Berberis lycium Royle fruit extract (BLFE) in mitigating chemical-induced colitis in mice.

Methods

Colitis was induced in Balb/C mice using dextran sulphate sodium (DSS) and protective effects of BLFE were examined. Several oxi-inflammatory parameters, histopathological changes, epithelial barrier integrity and activation of NF-κB/c-Jun/MAPKs in colon tissue were determined. Splenic T cell subpopulations were also gauged to evaluate the systemic effects of BLFE in the modulation of immune responses.

Results

BLFE treatment effectively improved animal survival rate, DAI score, colon length and structural damage in DSS-exposed mice. Expression of oxi-inflammatory markers such as MPO, IgE, iNOS, ICAM-1, MCP-1 and RANTES as well as Th1/Th2/Th17 cytokines were decreased in BLFE treated animals. On the other hand, an increased mRNA expression of anti-inflammatory cytokines (IL-4/IL-10), tight junction proteins and IgA levels were also observed during BLFE treatment. BLFE appeared to modulate intestinal epithelial cell proliferation (PCNA) and apoptosis (Bcl2/Bax), thereby suggesting its role in the maintenance of intestinal integrity. Analysis of inflammatory signalling pathways indicated robust activation and expression of NF-κB/c-Jun/MAPKs (JNK and p38) in DSS treated animal which was strongly abrogated by BLFE treatment. BLFE supplementation also enhanced the proliferation of CD3+CD4+CD25+ Treg cells indicating suppression of inflammatory activation.

Conclusion

These observations provide compelling evidence that BLFE could be considered as a viable natural strategy in the prevention and management of ulcerative colitis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Algieri F, Rodriguez-Nogales A, Garrido-Mesa N, Zorrilla P, Burkard N, Pischel I et al (2014) Intestinal anti-inflammatory activity of the Serpylli herba extract in experimental models of rodent colitis. J Crohn’s Colitis 8:775–788. https://doi.org/10.1016/j.crohns.2013.12.012

    Article  Google Scholar 

  2. El-Akabawy G, El-Sherif NM (2019) Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomed Pharmacother 111:841–851. https://doi.org/10.1016/j.biopha.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  3. Alabi QK, Akomolafe RO, Omole JG, Adefisayo MA, Ogundipe OL, Aturamu A et al (2018) Polyphenol-rich extract of Ocimum gratissimum leaves ameliorates colitis via attenuating colonic mucosa injury and regulating pro-inflammatory cytokines production and oxidative stress. Biomed Pharmacother 103:812–822. https://doi.org/10.1016/j.biopha.2018.04.071

    Article  CAS  PubMed  Google Scholar 

  4. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14:329–342. https://doi.org/10.1038/nri3661

    Article  CAS  PubMed  Google Scholar 

  5. Alex P, Zachos NC, Nguyen T, Gonzales L, Chen TE, Conklin LS et al (2008) Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 15:341–352. https://doi.org/10.1002/ibd.20753

    Article  Google Scholar 

  6. Maria-Ferreira D, Nascimento AM, Cipriani TR, Santana-Filho AP, Watanabe PDS, Sant Ana DMG et al (2018) Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells. Sci Rep 8:12261–12275. https://doi.org/10.1038/s41598-018-30526-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zou Y, Lin J, Li W, Wu Z, He Z, Huang G et al (2016) Huangqin-tang ameliorates dextran sodium sulphate-induced colitis by regulating intestinal epithelial cell homeostasis, inflammation and immune response. Sci Rep 6:39299–39312. https://doi.org/10.1038/srep39299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Broom OJ, Widjaya B, Troelsen J, Olsen J, Nielsen OH (2009) Mitogen activated protein kinases: a role in inflammatory bowel disease? Clin Exp Immunol 158:272–280. https://doi.org/10.1111/j.1365-2249.2009.04033.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Funakoshi T, Yamashita K, Ichikawa N, Fukai M, Suzuki T, Goto R et al (2012) A novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates inflammatory colonic injury in mice. J Crohn’s Colitis 6:215–225. https://doi.org/10.1016/j.crohns.2011.08.011

    Article  Google Scholar 

  10. Gao Z, Yu C, Liang H, Wang X, Liu Y, Li X et al (2018) Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: involvement of NF-κB and MAPK signalling pathways. Int Immunopharmacol 57:82–90. https://doi.org/10.1016/j.intimp.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  11. Jeengar MK, Thummuri D, Magnusson M, Naidu VGM, Uppugunduri S (2017) Uridine ameliorates dextran sulfate sodium (DSS)-induced colitis in mice. Sci Rep 7:3924–3942. https://doi.org/10.1038/s41598-017-04041-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma A, Sharma R, Kumar D, Padwad Y (2018) Berberis lycium Royle fruit extract mitigates oxi-inflammatory stress by suppressing NF-κB/MAPK signalling cascade in activated macrophages and Treg proliferation in splenic lymphocytes. Inflammopharmacology. https://doi.org/10.1007/s10787-018-0548-z

    Article  PubMed  Google Scholar 

  13. Praengam K, Sahasakul Y, Kupradinun P, Sakarin S, Sanitchua W, Rungsipipat A et al (2017) Brown rice and retrograded brown rice alleviate inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice. Food Funct 8:4630–4643. https://doi.org/10.1039/c7fo00305f.o

    Article  CAS  PubMed  Google Scholar 

  14. Lee S-J, Shin J-S, Choi H-E, Lee K-G, Cho Y-W, An H-J et al (2014) Chloroform fraction of Solanum tuberosum L. cv Jayoung epidermis suppresses LPS-induced inflammatory responses in macrophages and DSS-induced colitis in mice. Food Chem Toxicol 63:53–61. https://doi.org/10.1016/j.fct.2013.10.040

    Article  CAS  PubMed  Google Scholar 

  15. Utrilla MP, Peinado MJ, Ruiz R, Rodriguez-Nogales A, Algieri F, Rodriguez-Cabezas ME et al (2015) Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis. Mol Nutr Food Res 59:807–819. https://doi.org/10.1002/mnfr.201400630

    Article  CAS  PubMed  Google Scholar 

  16. Vezza T, Algieri F, Rodríguez-Nogales A, Garrido-Mesa J, Utrilla MP, Talhaoui N et al (2017) Immunomodulatory properties of Olea europaea leaf extract in intestinal inflammation. Mol Nutr Food Res 61:1601066–1601075. https://doi.org/10.1002/mnfr.201601066

    Article  CAS  Google Scholar 

  17. Qian Z, Wu Z, Huang L, Qiu H, Wang L, Li L et al (2015) Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci Rep 5:17348–17361. https://doi.org/10.1038/srep17348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boschetti G, Kanjarawi R, Bardel E, Collardeau-Frachon S, Duclaux-Loras R, Moro-Sibilot L et al (2016) Gut inflammation in mice triggers proliferation and function of mucosal Foxp3+ regulatory T cells but impairs their conversion from CD4+ T Cells. J Crohn’s Colitis 11:105–117. https://doi.org/10.1093/ecco-jcc/jjw125

    Article  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  20. Sharma A, Joshi R, Kumar S, Sharma R, Sharma R, Padwad Y, Gupta M (2018) Prunus cerasoides fruit extract ameliorates inflammatory stress by modulation of iNOS pathway and Th1/Th2 immune homeostasis in activated murine macrophages and lymphocytes. Inflammopharmacology 26:1483–1495. https://doi.org/10.1007/s10787-018-0448-2

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Patial V, Soni S, Sharma S, Pratap K, Kumar D et al (2017) Picrorhiza kurroa enhances β-Cell mass proliferation and insulin secretion in streptozotocin evoked β-Cell damage in rats. Front Pharmacol 8:537–552. https://doi.org/10.3389/fphar.2017.00537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang O-H, Kim D-K, Choi Y-A, Park H-J, Tae J, Kang C-S et al (2006) Suppressive effect of non-anaphylactogenic anti-IgE antibody on the development of dextran sulfate sodium-induced colitis. Int J Mol Med 18:893–899. https://doi.org/10.3892/ijmm.18.5.893

    Article  CAS  PubMed  Google Scholar 

  23. Cerutti A, Rescigno M (2008) The biology of intestinal immunoglobulin A responses. Immunity 28:740–750. https://doi.org/10.1016/j.immuni.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gutzeit C, Magri G, Cerutti A (2014) Intestinal IgA production and its role in host-microbe interaction. Immunol Rev 260:76–85. https://doi.org/10.1111/imr.12189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pervin M, Hasnat MA, Lim J-H, Lee Y-M, Kim EO, Um B-H et al (2016) Preventive and therapeutic effects of blueberry (Vaccinium corymbosum) extract against DSS-induced ulcerative colitis by regulation of antioxidant and inflammatory mediators. J Nutr Biochem 28:103–113. https://doi.org/10.1016/j.jnutbio.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  26. Hirahara K, Nakayama T (2016) CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol 28:163–171. https://doi.org/10.1093/intimm/dxw006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trivedi PJ, Adams DH (2018) Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; pitfalls and promise. J Crohn’s Colitis 12:1508–1520. https://doi.org/10.1093/ecco-jcc/jjy130

    Article  Google Scholar 

  28. Sanchez-Muñoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288. https://doi.org/10.3748/wjg.14.4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen P, Zhang Z, Zhu K, Cao H, Liu J, Lu X et al (2019) Evodiamine prevents dextran sulfate sodium-induced murine experimental colitis via the regulation of NF-κB and NLRP3 inflammasome. Biomed Pharmacother 110:786–795. https://doi.org/10.1016/j.biopha.2018.12.033

    Article  CAS  PubMed  Google Scholar 

  30. Jin B-R, Chung K-S, Cheon S-Y, Lee M, Hwang S, Noh Hwang S et al (2017) Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci Rep 7:46252–46263. https://doi.org/10.1038/srep46252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Noti M, Corazza N, Mueller C, Berger B, Brunner T (2010) TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med 207:1057–1066. https://doi.org/10.1084/jem.20090849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang S-C, Lee C, Chung B (2014) Tumor necrosis factor suppresses NR5A2 activity and intestinal glucocorticoid synthesis to sustain chronic colitis. Sci Signal 7:314–326. https://doi.org/10.1126/scisignal.2004786(ra20)

    Article  CAS  Google Scholar 

  33. Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 13:3–10. https://doi.org/10.1016/j.autrev.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  34. Makita S, Kanai T, Oshima S, Uraushihara K, Totsuka T, Sawada T et al (2004) CD4 + CD25 bright T Cells in human intestinal lamina propria as regulatory cells. J Immunol 173:3119–3130. https://doi.org/10.4049/jimmunol.173.5.3119

    Article  CAS  PubMed  Google Scholar 

  35. Wei S (2006) Regulatory T-cell compartmentalization and trafficking. Blood 108:426–431. https://doi.org/10.1182/blood-2006-01-0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui H, Cai Y, Wang L, Jia B, Li J, Zhao S et al (2018) Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon. Front Pharmacol 9:517–534. https://doi.org/10.3389/fphar.2018.00571

    Article  CAS  Google Scholar 

  37. Lu Y, Kim N-M, Jiang Y-W, Zhang H, Zheng D, Zhu F-X et al (2018) Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol 175:1085–1099. https://doi.org/10.1111/bph.14150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the Director, CSIR- IHBT Palampur, for his support and encouragement. We acknowledge SEED, Department of Science and Technology, for providing financial assistance through project GAP-0193 and CSIR for project MLP-0204, respectively, along with Academy of Scientific and Innovative Research (AcSIR), New Delhi, India for Ph.D. registration. CSIR-IHBT communication number for this manuscript is: 4386.

Author information

Authors and Affiliations

Authors

Contributions

AS and YS conceptualized and designed the study. AS and NT developed animal model and performed experiments. NT was involved in data analysis of histopathology, immunofluorescence and immunohistochemistry. AS and PK performed haematology and biochemistry analysis. AS analysed the data. AS, NT and YP wrote the manuscript. YP and RS edited and revised the manuscript. All authors corrected and approved the manuscript.

Corresponding author

Correspondence to Yogendra Padwad.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Tirpude, N.V., Kulurkar, P.M. et al. Berberis lycium fruit extract attenuates oxi-inflammatory stress and promotes mucosal healing by mitigating NF-κB/c-Jun/MAPKs signalling and augmenting splenic Treg proliferation in a murine model of dextran sulphate sodium-induced ulcerative colitis. Eur J Nutr 59, 2663–2681 (2020). https://doi.org/10.1007/s00394-019-02114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02114-1

Keywords

Navigation