Skip to main content
Log in

Iron bioavailability of four iron sources used to fortify infant cereals, using anemic weaning pigs as a model

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Iron (Fe) deficiency anemia in young children is a global health concern which can be reduced by Fe fortification of foods. Cereal is often one of the first foods given to infants, providing adequate quantities of Fe during weaning. In this work, we have compared iron bioavailability and iron status of four iron sources used to fortify infant cereals, employing piglets as an animal model.

Method

The study was conducted on 36 piglets, 30 of them with induced anemia. From day 28 of life, the weaned piglets were fed with four experimental diets (n = 6) each fortified with 120 mg Fe/kg by ferrous sulfate heptahydrate (FSH), electrolytic iron (EI), ferrous fumarate (FF), or micronized dispersible ferric pyrophosphate (MDFP) for another 21 days. In addition, one group of six anemic piglets fed with the basal diet with no iron added (Control−) and a Control+ group of non-anemic piglets (n = 6) were also studied. Blood indicators of iron status were measured after depletion and during the repletion period. The Fe content in organs, hemoglobin regeneration efficiency, and relative bioavailability (RBV) was also determined.

Results

The Fe salts adequately treated anemia in the piglets, allowing the animals to recover from the anemic state, although EI was less efficient with regard to replenishing Fe stores giving lower concentrations of plasma ferritin and iron in the spleen, liver, lung, and kidney. In addition, the RBV of EI was 88.27% with respect to the reference iron salt (FSH).

Conclusions

Ferrous fumarate and MDFP were equally as bioavailable as the reference salt, and were used significantly better than EI in piglets. These results contribute to extend the evidence-based results for recommending the most suitable fortificant for infant cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (2001) Iron deficiency anemia. Assessment, prevention and control. World Health Organization, Geneva, pp 1–132

    Google Scholar 

  2. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105(4):1–11

    Article  Google Scholar 

  3. Gera T, Sachdev HS, Boy E (2012) Effect of iron-fortified foods on hematologic and biological outcomes: systematic review of randomized controlled trials. Am J Clin Nutr 96:309–324

    Article  CAS  PubMed  Google Scholar 

  4. Bryszewska MA, Laghi L, Zannoni A, Gianotti A, Barone F, Saa DLT, Bacci ML, Ventrella D, Forni M (2017) Bioavailability of microencapsulated iron from fortified bread assessed using piglet model. Nutrients 9(3):272

    Article  CAS  PubMed Central  Google Scholar 

  5. Hurrell RF (1997) Preventing iron deficiency through food fortification. Nutr Rev 55(6):210–222

    Article  CAS  PubMed  Google Scholar 

  6. Haro-Vicente JF, Pérez-Conesa D, Rincón F, Ros G, Martínez-Graciá C, Vidal ML (2008) Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice? Eur J Nutr 47(8):470–478

    Article  CAS  PubMed  Google Scholar 

  7. Casgrain A, Collings R, Harvey LJ, Boza JJ, Fairweather-Tait SJ (2010) Micronutrient bioavailability research priorities. Am J Clin Nutr 91(5):1423S 1429S

    Article  CAS  PubMed  Google Scholar 

  8. Hackl L, Cercamondi CI, Zeder C, Wild D, Adelmann H, Zimmermann MB, Moretti D (2016) Cofortification of ferric pyrophosphate and citric acid/trisodium citrate into extruded rice grains doubles iron bioavailability through in situ generation of soluble ferric pyrophosphate citrate complexes. Am J Clin Nutr 103(5):1252–1259

    Article  CAS  PubMed  Google Scholar 

  9. Hurrell RF, Furniss DE, Burri J, Whittaker P, Lynch SR, Cook JD (1989) Iron fortification of infant cereals: a proposal for the use of ferrous fumarate or ferrous succinate. Am J Clin Nutr 49(6):1274–1280

    Article  CAS  PubMed  Google Scholar 

  10. Fernández-Palacios L, Ros G, Frontela C (2015) Nutrientes clave en la alimentación complementaria: el hierro en fórmulas y cereales/Key nutrients in complementary feeding: iron in formulas and cereals. Acta Pediatr Esp 73(10):269–276

    Google Scholar 

  11. Davidsson L, Kastenmayer P, Szajewska H, Hurrell RF, Barclay D (2000) Iron bioavailability in infants from an infant cereal fortified with ferric pyrophosphate or ferrous fumarate. Am J Clin Nutr 71(6):1597–1602

    Article  CAS  PubMed  Google Scholar 

  12. Allen LH, De Benoist B, Dary O, Hurrell R, World Health Organization (2006) Guidelines on food fortification with micronutrients. World Health Organization

    Google Scholar 

  13. Hurrell R, Ranum P, De Pee S, Biebinger R, Hulthen L, Johnson Q, Lynch S (2010) Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs. Food Nutr Bull 31(1):S7–S21

    Article  PubMed  Google Scholar 

  14. Fidler MC, Walczyk T, Davidsson L, Zeder C, Sakaguchi N, Juneja LR, Hurrell RF (2004) A micronised, dispersible ferric pyrophosphate with high relative bioavailability in man. Br J Nutr 91(1):107–112

    Article  CAS  PubMed  Google Scholar 

  15. Ge L, Xia M, Yao Z, Sun Q (2016) Ferric pyrophosphate: a versatile and alternative iron fortification compound. In: Food hygiene, agriculture and animal science: proceedings of the 2015 international conference on food hygiene, agriculture and animal science, pp 94–102

  16. Patterson JK, Lei XG, Miller DD (2008) The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med 233(6):651–664

    Article  CAS  Google Scholar 

  17. Tako E, Laparra JM, Glahn RP, Welch RM, Lei XG, Beebe S, Miller DD (2009) Biofortified black beans in a maize and bean diet provide more bioavailable iron to piglets than standard black beans. J Nutr 139(2):305–309

    Article  CAS  PubMed  Google Scholar 

  18. Pu Y, Guo B, Liu D, Xiong H, Wang Y, Du H (2015) Iron supplementation attenuates the inflammatory status of anemic piglets by regulating hepcidin. Biol Trace Elem Res 167(1):28–35

    Article  CAS  PubMed  Google Scholar 

  19. Miller ER, Ullrey DE (1987) The pig as a model for human nutrition. Annu Rev Nutr 7(1):361–382

    Article  CAS  PubMed  Google Scholar 

  20. Yasuda K, Roneker KR, Miller DD, Welch RM, Lei XG (2006) Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs. J Nutr 136(12):3033–3038

    Article  CAS  PubMed  Google Scholar 

  21. Stahl CH, Han YM, Roneker KR, House WA, Lei XG (1999) Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. J Anim Sci 77(8):2135–2142

    Article  CAS  PubMed  Google Scholar 

  22. National Research Council (2012) Nutrient requirements of swine. National Academies Press, Washington, D.C.

    Google Scholar 

  23. Svoboda M, Drabek J (2005) Iron deficiency in suckling piglets: parenteral and oral iron administration to piglets. FOLIA 49(3):165–174

    CAS  Google Scholar 

  24. Gambino R, Desvarieux E, Orth M, Matan H, Ackattupathil T, Lijoi E, Gunter E (1997) The relation between chemically measured total iron-binding capacity concentrations and immunologically measured transferrin concentrations in human serum. Clin Chem 43(12):2408–2412

    CAS  PubMed  Google Scholar 

  25. Fiesel A, Ehrmann M, Geßner DK, Most E, Eder K (2015) Effects of polyphenol-rich plant products from grape or hop as feed supplements on iron, zinc and copper status in piglets. Arch Anim Nutr 69(4):276–284

    Article  CAS  PubMed  Google Scholar 

  26. Tan SY, Yeung CK, Tako E, Glahn RP, Welch RM, Lei X, Miller DD (2008) Iron bioavailability to piglets from red and white common beans (Phaseolus vulgaris). J Agric Food Chem 56(13):5008–5014

    Article  CAS  PubMed  Google Scholar 

  27. Staroń R, Lipiński P, Lenartowicz M, Bednarz A, Gajowiak A, Smuda E, Swinkels DW (2017) Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: duodenal expression profile of genes involved in heme iron absorption. PLoS One 12(7):e0181117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Starzyński RR, Canonne-Hergaux F, Lenartowicz M, Krzeptowski W, Willemetz A, Styś A, Lipiński P (2013) Ferroportin expression in haem oxygenase 1-deficient mice. Biochem J 449(1):69–78

    Article  CAS  PubMed  Google Scholar 

  29. Antonides A, Schoonderwoerd AC, Scholz G, Berg BM, Nordquist RE, Van Der Staay FJ (2015) Pre-weaning dietary iron deficiency impairs spatial learning and memory in the cognitive hole board task in piglets. Front Behav Neurosci 30(9):291

    Google Scholar 

  30. Kolb E (1989) Lehrbuch der Physiologie der Haustiere. 5. Aufl. Gustav Fischer Verlag, Stuttgart, Germany. Jena Teil 1:455–509

    Google Scholar 

  31. Ettle T, Schlegel P, Roth FX (2008) Investigations on iron bioavailability of different sources and supply levels in piglets. J Anim Physiol Anim Nutr 92(1):35–43

    CAS  Google Scholar 

  32. Windisch W (2002) Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Anal Bioanal Chem 372(3):421–425

    Article  CAS  PubMed  Google Scholar 

  33. Perri AM, Friendship RM, Harding JC, O’Sullivan TL (2016) An investigation of iron deficiency and anemia in piglets and the effect of iron status at weaning on post-weaning performance. J Swine Health Prod 24(1):10–20

    Google Scholar 

  34. Ventrella D, Dondi F, Barone F, Serafini F, Elmi A, Giunti M, Bacci ML (2017) The biomedical piglet: establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Vet Res 13(1):23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. García-Casal MN, Pasricha SR, Martínez RX, López-Pérez L, Peña-Rosas JP (2015) Serum or plasma ferritin concentration as an index of iron deficiency and overload (Protocol). The Cochrane Library, London

    Google Scholar 

  36. Smith JE, Moore K, Boyington D, Pollmann DS, Schoneweis D (1984) Serum ferritin and total iron-binding capacity to estimate iron storage in pigs. Vet Pathol 21(6):597–600

    Article  CAS  PubMed  Google Scholar 

  37. Linder MC (2013) Mobilization of stored iron in mammals: a review. Nutrients 5(10):4022–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang H, Li Y, Wang T (2015) Antioxidant capacity and concentration of redox-active trace mineral in fully weaned intra-uterine growth retardation piglets. J Anim Sci Biotechnol 6(1):48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Wan D, Zhou X, Long C, Wu X, Li L, Yin Y (2017) Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs. Biochem Biophys Res Commun 490(4):1210–1214

    Article  CAS  PubMed  Google Scholar 

  40. Fidler MC, Davidsson L, Zeder C, Walczyk T, Hurrell RF (2003) Iron absorption from ferrous fumarate in adult women is influenced by ascorbic acid but not by Na2EDTA. Br J Nutr 90(6):1081–1085

    Article  CAS  PubMed  Google Scholar 

  41. Perfecto A, Elgy C, Valsami-Jones E, Sharp P, Hilty F, Fairweather-Tait S (2017) Mechanisms of iron uptake from ferric phosphate nanoparticles in human intestinal caco-2 cells. Nutrients 9(4):359–373

    Article  CAS  PubMed Central  Google Scholar 

  42. Roe MA, Collings R, Hoogewerff J, Fairweather-Tait SJ (2009) Relative bioavailability of micronized, dispersible ferric pyrophosphate added to an apple juice drink. Eur J Nutr 48(2):115–119

    Article  CAS  PubMed  Google Scholar 

  43. Howard L, Buchowski M, Wang BJ, Miller DD (1993) Bioavailability of electrolytic iron in fortified infant cereal determined by hemoglobin repletion in piglets. Nutr Res 13(3):287–295

    Article  CAS  Google Scholar 

  44. Zimmerman MB, Winichagoon P, Gowachirapant S, Hess SY, Harrington M, Chavasit V, Lynch SR, Hurrell RF (2005) Comparison of the efficacy of wheat-based snacks fortified with ferrous sulfate, electrolytic iron, or hydrogen-reduced elemental iron: randomized, double-blind, controlled trial in Thai women. Am J Clin Nutr 82(6):1276–1128

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Innovation of the Spanish Government (Secretaría de Estado de Investigación, Desarrollo e Innovación) (Project Ref. AGL2013-40617-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Martínez Graciá.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and the manuscript was approved by all authors for publication. The work described is original research that has not been published previously and is not under consideration for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caballero Valcárcel, A.M., Martínez Graciá, C., Martínez Miró, S. et al. Iron bioavailability of four iron sources used to fortify infant cereals, using anemic weaning pigs as a model. Eur J Nutr 58, 1911–1922 (2019). https://doi.org/10.1007/s00394-018-1742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1742-x

Keywords

Navigation