Skip to main content
Log in

Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Orange juice (OJ) flavanones undergo limited absorption in the upper gastrointestinal tract and reach the colon where they are transformed by the microbiota prior to absorption. This study investigated the ability of two probiotic bacteria, Bifidobacterium longum R0175 and Lactobacillus rhamnosus subsp. Rhamnosus NCTC 10302 to catabolise OJ flavanones.

Methods

The bacteria were incubated with hesperetin-7-O-rutinoside, naringenin-7-O-rutinoside, hesperetin and naringenin, and the culture medium and intracellular cell extracts were collected at intervals over a 48 h of incubation period. The flavanones and their phenolic acid catabolites were identified and quantified by HPLC–HR–MS.

Results

Both probiotics were able to subject hesperetin to ring fission yielding 3-(3′-hydroxy-4′-methoxyphenyl)propionic acid which was subsequently demethylated producing 3-(3′,4′-dihydroxyphenyl)propionic acid and then via successive dehydroxylations converted to 3-(3′-hydroxyphenyl)propionic acid and 3-(phenyl)propionic acid. Incubation of both bacteria with naringenin resulted in its conversion to 3-(4′-hydroxyphenyl)propionic acid which underwent dehydroxylation yielding 3-(phenyl)propionic acid. In addition, only L. rhamnosus exhibited rhamnosidase and glucosidase activity and unlike B. longum, which was able to convert hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside to their respective aglycones. The aglycones were then subjected to ring fission and further catabolised in a similar manner to that described above. The flavanones and their catabolites were found in the culture medium but not accumulated in the bacterial cells.

Conclusions

These findings demonstrate the enzymatic potential of single strains of bifidobacterium and lactobacillus which may be involved in the colonic catabolism of OJ flavanones in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cassidy A, Rimm EB, O’Reilly ÉJ, Logroscino G, Kay C, Chiuve SE, Rexrode KM (2012) Dietary flavonoids and risk of stroke in women. Stroke 43:946–951

    Article  CAS  Google Scholar 

  2. Rizza S, Muniyappa R, Iantorno M, Kim J-A, Chen H, Pullikotil P, Senese N, Tesauro M, Lauro D, Cardillo C (2011) Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrin Metab 96:E782–E792

    Article  CAS  Google Scholar 

  3. Jaganathan SK, Vellayappan MV, Narasimhan G, Supriyanto E (2014) Role of pomegranate and citrus fruit juices in colon cancer prevention. World J Gastroenterol 20:4618–4625

    Article  Google Scholar 

  4. Palli D, Russo A, Ottini L, Masala G, Saieva C, Amorosi A, Cama A, D’Amico C, Falchetti M, Palmirotta R (2001) Red meat, family history, and increased risk of gastric cancer with microsatellite instability. Cancer Res 61:5415–5419

    CAS  Google Scholar 

  5. McCullough ML, Robertson AS, Jacobs EJ, Chao A, Calle EE, Thun MJ (2001) A prospective study of diet and stomach cancer mortality in United States men and women. Cancer Epidemiol Biomark Prev 10:1201–1205

    CAS  Google Scholar 

  6. Rangel-Huerta OD, Aguilera CM, Martin MV, Soto MJ, Rico MC, Vallejo F, Tomas-Barberan F, Perez-de-la-Cruz AJ, Gil A, Mesa MD (2015) Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. J Nutr 145:1808–1816

    Article  CAS  Google Scholar 

  7. Morand C, Dubray C, Milenkovic D, Lioger D, Martin JF, Scalbert A, Mazur A (2011) Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers. Am J Clin Nutr 93:73–80

    Article  CAS  Google Scholar 

  8. Constans J, Bennetau-Pelissero C, Martin J-F, Rock E, Mazur A, Bedel A, Morand C, Bérard AM (2014) Marked antioxidant effect of orange juice intake and its phytomicronutrients in a preliminary randomized cross-over trial on mild hypercholesterolemic men. Clin Nutr. doi:10.1016/j.clnu.2014.12.016

    Google Scholar 

  9. Asgary S, Keshvari M, Afshani MR, Amiri M, Laher I, Javanmard SH (2014) Effect of fresh orange juice intake on physiological characteristics in healthy volunteers. ISRN Nutr. doi:10.1155/2014/405867

    Google Scholar 

  10. Mullen W, Archeveque M-A, Edwards CA, Matsumoto H, Crozier A (2008) Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt. J Agric Food Chem 56:11157–11164

    Article  CAS  Google Scholar 

  11. Urpi-Sarda M, Rothwell J, Morand C, Manach C (2012) Bioavailability of flavanones. In: Spencer JPE, Crozier A (eds) Flavonoids and related compounds: bioavailability and function. CRC Press, Boca Raton, pp 1–44

    Google Scholar 

  12. Borges G, Lean MEJ, Roberts SA, Crozier A (2013) Bioavailability of dietary (poly)phenols: a study with ileostomists to discriminate between absorption in small and large intestine. Food Funct 4:754–762

    Article  CAS  Google Scholar 

  13. Roowi S, Mullen W, Edwards CA, Crozier A (2009) Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Mol Nutr Food Res 53(S1):S68–S75

    Article  Google Scholar 

  14. Pereira-Caro G, Borges G, Van Der Hooft J, Clifford MN, Del Rio D, Lean ME, Roberts SA, Kellerhals MB, Crozier A (2014) Orange juice (poly) phenols are highly bioavailable in humans. Am J Clin Nutr 100:1378–1384

    Article  CAS  Google Scholar 

  15. Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr 97:995–1003

    Article  CAS  Google Scholar 

  16. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  Google Scholar 

  17. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    Article  CAS  Google Scholar 

  18. Rodriguez-Mateos A, Vauzour D, Krueger C, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88:1803–1853

    Article  CAS  Google Scholar 

  19. Possemiers S, Bolca S, Verstraete W, Heyerick A (2011) The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 82:53–66

    Article  CAS  Google Scholar 

  20. Stoupi S, Williamson G, Drynan JW, Barron D, Clifford MN (2010) A comparison of the in vitro biotransformation of (–)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res 54:747–759

    Article  CAS  Google Scholar 

  21. Stalmach A, Steiling H, Williamson G, Crozier A (2010) Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch Biochem Biophys 501:98–105

    Article  CAS  Google Scholar 

  22. González-Barrio R, Edwards CA, Crozier A (2011) Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: in vivo and in vitro studies. Drug Metab Dispos 39:1680–1688

    Article  Google Scholar 

  23. Russell DA, Ross RP, Fitzgerald GF, Stanton C (2011) Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 149:88–105

    Article  CAS  Google Scholar 

  24. Ooi L-G, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522

    Article  CAS  Google Scholar 

  25. Pereira-Caro G, Oliver CM, Weerakkody R, Singh T, Conlon M, Borges G, Sanguansri L, Lockett T, Roberts SA, Crozier A, Augustin MA (2015) Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Rad Biol Med 84:206–214

    Article  CAS  Google Scholar 

  26. Sánchez-Patán F, Tabasco R, Monagas M, Requena T, Peláez C, Moreno-Arribas MV, Bartolomé B (2012) Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. J Agric Food Chem 60:7142–7151

    Article  Google Scholar 

  27. López de Lacey AM, Pérez-Santín E, López-Caballero ME, Montero P (2014) Survival and metabolic activity of probiotic bacteria in green tea. LWT—Food Sci Technol 55:314–322

    Google Scholar 

  28. Otieno DO, Ashton JF, Shah NE (2005) Stability of β-glucosidase activity produced by bifidobacterium and lactobacillus spp. in fermented soymilk during processing and storage. J Food Sci 70:M236–M241

    Article  CAS  Google Scholar 

  29. Ávila M, Jaquet M, Moine D, Requena T, Peláez C, Arigoni F, Jankovic I (2009) Physiological and biochemical characterization of the two α-l-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology 155:2739–2749

    Article  Google Scholar 

  30. Beekwilder J, Marcozzi D, Vecchi S, de Vos R, Janssen P, Francke C, van Hylckama Vlieg J, Hall RD (2009) Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl Environ Microbiol 75:3447–3454

    Article  CAS  Google Scholar 

  31. Duda-Chodak A (2012) The inhibitory effect of polyphenols on human gut microbiota. J Physiol Pharmacol 63:497–503

    CAS  Google Scholar 

  32. Tabasco R, Sánchez-Patán F, Monagas M, Bartolomé B, Moreno-Arribas MV, Peláez C, Requena T (2011) Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol 28:1345–1352

    Article  CAS  Google Scholar 

  33. Pereira-Caro G, Borges G, Ky I, Ribas A, Calani L, Del Rio D, Clifford MN, Roberts SA, Crozier A (2015) In vitro colonic catabolism of orange juice (poly)phenols. Mol Nutr Food Res 59:465–475

    Article  CAS  Google Scholar 

  34. Grbic-Galic D (1986) O-Demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions. J Appl Bacteriol 61:491–497

    Article  CAS  Google Scholar 

  35. DeWeerd K, Saxena A, Nagle D, Suflita J (1988) Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl Environ Microbiol 54:1237–1242

    CAS  Google Scholar 

  36. Hur H-G, Rafii F (2000) Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol Lett 192:21–25

    Article  CAS  Google Scholar 

  37. Amaretti A, Raimondi S, Leonardi A, Quartieri A, Rossi M (2015) Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients 7:2788–2800

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mary Ann Augustin (CSIRO, Australia) for supplying the B. longum and Professor Malcolm Jackson (University of Liverpool, UK) for providing a sample of L. rhamnosus. This work has been funded by the Andalusian Institute of Agricultural and Fishery Research and Training (IFAPA) through the Project PP.AVA.AVA201301.7 and the European Social (ESF) and Rural Development Funds (ERDF). GP-C is supported by a postdoctoral research contract funded by IFAPA and ESF. IAL is supported by a postdoctoral fellowship funded by the Spanish Ministry of Economy and Competitiveness (FJCI-2014-20689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Pereira-Caro.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira-Caro, G., Fernández-Quirós, B., Ludwig, I. et al. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus . Eur J Nutr 57, 231–242 (2018). https://doi.org/10.1007/s00394-016-1312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1312-z

Keywords

Navigation