Skip to main content
Log in

Challenges in estimating the validity of dietary acrylamide measurements

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Acrylamide is a chemical compound present in tobacco smoke and food, classified as a probable human carcinogen and a known human neurotoxin. Acrylamide is formed in foods, typically carbohydrate-rich and protein-poor plant foods, during high-temperature cooking or other thermal processing. The objectives of this study were to compare dietary estimates of acrylamide from questionnaires (DQ) and 24-h recalls (R) with levels of acrylamide adduct (AA) in haemoglobin.

Methods

In the European Prospective Investigation into Cancer and Nutrition (EPIC) study, acrylamide exposure was assessed in 510 participants from 9 European countries, randomly selected and stratified by age, sex, with equal numbers of never and current smokers. After adjusting for country, alcohol intake, smoking status, number of cigarettes and energy intake, correlation coefficients between various acrylamide measurements were computed, both at the individual and at the aggregate (centre) level.

Results

Individual level correlation coefficient between DQ and R measurements (r DQ,R) was 0.17, while r DQ,AA and r R,AA were 0.08 and 0.06, respectively. In never smokers, r DQ,R, r DQ,AA and r R,AA were 0.19, 0.09 and 0.02, respectively. The correlation coefficients between means of DQ, R and AA measurements at the centre level were larger (r > 0.4).

Conclusions

These findings suggest that estimates of total acrylamide intake based on self-reported diet correlate weakly with biomarker AA Hb levels. Possible explanations are the lack of AA levels to capture dietary acrylamide due to individual differences in the absorption and metabolism of acrylamide, and/or measurement errors in acrylamide from self-reported dietary assessments, thus limiting the possibility to validate acrylamide DQ measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Smith CJ, Perfetti TA, Rumple MA, Rodgman A, Doolittle DJ (2000) “IARC group 2A Carcinogens” reported in cigarette mainstream smoke. Food Chem Toxicol 38:371–383

    Article  CAS  Google Scholar 

  2. Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    Article  CAS  Google Scholar 

  3. Tran NL, Barraj LM, Murphy MM, Bi X (2010) Dietary acrylamide exposure and hemoglobin adducts–National Health and Nutrition Examination Survey (2003–04). Food Chem Toxicol 48:3098–3108

    Article  CAS  Google Scholar 

  4. Doerge DR, Young JF, McDaniel LP, Twaddle NC, Churchwell MI (2005) Toxicokinetics of acrylamide and glycidamide in B6C3F1 mice. Toxicol Appl Pharmacol 202:258–267

    Article  CAS  Google Scholar 

  5. Tornqvist M, Fred C, Haglund J, Helleberg H, Paulsson B, Rydberg P (2002) Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B Analyt Technol Biomed Life Sci 778:279–308

    Article  CAS  Google Scholar 

  6. Vikstrom AC, bramsson-Zetterberg L, Naruszewicz M, Athanassiadis I, Granath FN, Tornqvist MA (2011) In vivo doses of acrylamide and glycidamide in humans after intake of acrylamide-rich food. Toxicol Sci 119:41–49

    Google Scholar 

  7. Wirfalt E, Paulsson B, Tornqvist M, Axmon A, Hagmar L (2008) Associations between estimated acrylamide intakes, and hemoglobin AA adducts in a sample from the Malmo Diet and Cancer cohort. Eur J Clin Nutr 62:314–323

    Article  CAS  Google Scholar 

  8. Kutting B, Uter W, Drexler H (2008) The association between self-reported acrylamide intake and hemoglobin adducts as biomarkers of exposure. Cancer Causes Control 19:273–281

    Article  Google Scholar 

  9. Wilson KM, Vesper HW, Tocco P, Sampson L, Rosen J, Hellenas KE, Tornqvist M, Willett WC (2009) Validation of a food frequency questionnaire measurement of dietary acrylamide intake using hemoglobin adducts of acrylamide and glycidamide. Cancer Causes Control 20:269–278

    Article  Google Scholar 

  10. Bjellaas T, Olesen PT, Frandsen H, Haugen M, Stolen LH, Paulsen JE, Alexander J, Lundanes E, Becher G (2007) Comparison of estimated dietary intake of acrylamide with hemoglobin adducts of acrylamide and glycidamide. Toxicol Sci 98:110–117

    Article  CAS  Google Scholar 

  11. Pelucchi C, Galeone C, Levi F, Negri E, Franceschi S, Talamini R, Bosetti C, Giacosa A, La VC (2006) Dietary acrylamide and human cancer. Int J Cancer 118:467–471

    Article  CAS  Google Scholar 

  12. Hogervorst JG, Baars BJ, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA (2010) The carcinogenicity of dietary acrylamide intake: a comparative discussion of epidemiological and experimental animal research. Crit Rev Toxicol 40:485–512

    Article  CAS  Google Scholar 

  13. Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Charrondiere UR, Hemon B, Casagrande C, Vignat J, Overvad K, Tjonneland A, Clavel-Chapelon F, Thiebaut A, Wahrendorf J, Boeing H, Trichopoulos D, Trichopoulou A, Vineis P, Palli D, Bueno-de-Mesquita HB, Peeters PH, Lund E, Engeset D, Gonzalez CA, Barricarte A, Berglund G, Hallmans G, Day NE, Key TJ, Kaaks R, Saracci R (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5:1113–1124

    Article  CAS  Google Scholar 

  14. Vesper HW, Slimani N, Hallmans G, Tjonneland A, Agudo A, Benetou V, Bingham S, Boeing H, Boutron-Ruault MC, Bueno-de-Mesquita HB, Chirlaque D, Clavel-Chapelon F, Crowe F, Drogan D, Ferrari P, Johansson I, Kaaks R, Linseisen J, Lund E, Manjer J, Mattiello A, Palli D, Peeters PH, Rinaldi S, Skeie G, Trichopoulou A, Vineis P, Wirfalt E, Overvad K, Stromberg U (2008) Cross-sectional study on acrylamide hemoglobin adducts in subpopulations from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. J Agric Food Chem 56:6046–6053

    Article  CAS  Google Scholar 

  15. Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F, Lotze G, Kroke A, Trichopoulos D, Trichopoulou A, Lauria C, Bellegotti M, Ocke MC, Peeters PH, Engeset D, Lund E, Agudo A, Larranaga N, Mattisson I, Andren C, Johansson I, Davey G, Welch AA, Overvad K, Tjonneland A, Van Staveren WA, Saracci R, Riboli E (2002) European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr 5:1125–1145

    Article  CAS  Google Scholar 

  16. Vesper HW, Ospina M, Meyers T, Ingham L, Smith A, Gray JG, Myers GL (2006) Automated method for measuring globin adducts of acrylamide and glycidamide at optimized Edman reaction conditions. Rapid Commun Mass Spectrom 20:959–964

    Article  CAS  Google Scholar 

  17. Mowrer J, Tornqvist M, Jensen S, Ehrenberg L (1986) Modified Edman degradation applied to hemoglobin for monitoring occupational exposure to alkylating agents. Toxicol Environ Chem 11:215–231

    Article  CAS  Google Scholar 

  18. Slimani N, Ferrari P, Ocke M, Welch A, Boeing H, Liere M, Pala V, Amiano P, Lagiou A, Mattisson I, Stripp C, Engeset D, Charrondiere R, Buzzard M, Staveren W, Riboli E (2000) Standardization of the 24-h diet recall calibration method used in the european prospective investigation into cancer and nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr 54:900–917

    Article  CAS  Google Scholar 

  19. Kleinbaum D, Kupper L, Muller K (1988) Applied regression analysis and other multivariable method. Duxbury Press, Belmont

    Google Scholar 

  20. Fisher RA (1970) Statistical methods for research workers. Hafner Publishing Company, Davien

    Google Scholar 

  21. SAS Institute Inc (2002) NC, USA, Cary

  22. Vikstrom AC, Wilson KM, Paulsson B, Athanassiadis I, Gronberg H, Adami HO, Adolfsson J, Mucci LA, Balter K, Tornqvist M (2010) Alcohol influence on acrylamide to glycidamide metabolism assessed with hemoglobin-adducts and questionnaire data. Food Chem Toxicol 48:820–824

    Article  Google Scholar 

  23. Vikstrom AC, Warholm M, Paulsson B, Axmon A, Wirfalt E, Tornqvist M (2012) Hemoglobin adducts as a measure of variations in exposure to acrylamide in food and comparison to questionnaire data. Food Chem Toxicol 50:2531–2539

    Article  Google Scholar 

  24. Kaaks R, Ferrari P, Ciampi A, Plummer M, Riboli E (2002) Uses and limitations of statistical accounting for random error correlations, in the validation of dietary questionnaire assessments. Public Health Nutr 5:969–976

    Article  Google Scholar 

  25. Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, Bingham S, Schoeller DA, Schatzkin A, Carroll RJ (2003) Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol 158:14–21

    Article  Google Scholar 

  26. Ferrari P, Roddam A, Fahey MT, Jenab M, Bamia C, Ocke M, Amiano P, Hjartaker A, Biessy C, Rinaldi S, Huybrechts I, Tjonneland A, Dethlefsen C, Niravong M, Clavel-Chapelon F, Linseisen J, Boeing H, Oikonomou E, Orfanos P, Palli D, de Santucci MM, Bueno-de-Mesquita HB, Peeters PH, Parr CL, Braaten T, Dorronsoro M, Berenguer T, Gullberg B, Johansson I, Welch AA, Riboli E, Bingham S, Slimani N (2009) A bivariate measurement error model for nitrogen and potassium intakes to evaluate the performance of regression calibration in the European Prospective Investigation into Cancer and Nutrition study. Eur J Clin Nutr 63(Suppl 4):S179–S187

    Article  CAS  Google Scholar 

  27. Kaaks R, Slimani N, Riboli E (1997) Pilot phase studies on the accuracy of dietary intake measurements in the EPIC project: overall evaluation of results. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26(Suppl 1):S26–S36

    Google Scholar 

  28. Willett W (1989) An overview of issues related to the correction of non-differential exposure measurement error in epidemiologic studies. Stat Med 8:1031–1040

    Article  CAS  Google Scholar 

  29. Ferrari P, Roddam A, Fahey MT, Jenab M, Bamia C, Ocke M, Amiano P, Hjartaker A, Biessy C, Rinaldi S, Huybrechts I, Tjonneland A, Dethlefsen C, Niravong M, Clavel-Chapelon F, Linseisen J, Boeing H, Oikonomou E, Orfanos P, Palli D, de Santucci MM, Bueno-de-Mesquita HB, Peeters PH, Parr CL, Braaten T, Dorronsoro M, Berenguer T, Gullberg B, Johansson I, Welch AA, Riboli E, Bingham S, Slimani N (2009) A bivariate measurement error model for nitrogen and potassium intakes to evaluate the performance of regression calibration in the European Prospective Investigation into Cancer and Nutrition study. Eur J Clin Nutr 63(Suppl 4):S179–S187

    Article  CAS  Google Scholar 

  30. Ferrari P, Al-Delaimy WK, Slimani N, Boshuizen HC, Roddam A, Orfanos P, Skeie G, Rodriguez-Barranco M, Thiebaut A, Johansson G, Palli D, Boeing H, Overvad K, Riboli E (2005) An approach to estimate between- and within-group correlation coefficients in multicenter studies: plasma carotenoids as biomarkers of intake of fruits and vegetables. Am J Epidemiol 162:591–598

    Article  Google Scholar 

  31. Ferrari P, Day NE, Boshuizen HC, Roddam A, Hoffmann K, Thiebaut A, Pera G, Overvad K, Lund E, Trichopoulou A, Tumino R, Gullberg B, Norat T, Slimani N, Kaaks R, Riboli E (2008) The evaluation of the diet/disease relation in the EPIC study: considerations for the calibration and the disease models. Int J Epidemiol 37:368–378

    Article  Google Scholar 

  32. Ferrari P, Carroll RJ, Gustafson P, Riboli E (2008) A Bayesian multilevel model for estimating the diet/disease relationship in a multicenter study with exposures measured with error: the EPIC study. Stat Med 27:6037–6054

    Article  Google Scholar 

  33. Freisling H, Moskal A, Ferrari P, Nicolas G, Knaze V, Clavel-Chapelon F, Boutron-Ruault M-C, Nailler L, Teucher B, Grote V, Boeing H, Clemens M, Tjønneland A, Olsen A, Overvad K, Quirós JR, Duell EJ, Sánchez M-J, Amiano P, Chirlaque M-D, Barricarte A, Khaw K-T, Wareham NJ, Crowe FL, Gallo V, Oikonomou E, Naska A, Trichopoulou A, Palli D, Agnoli C, Tumino R, Polidoro S, Mattiello A, Bas Bueno-de-Mesquita H, Ocké MC, Peeters PHM, Wirfält E, Ericson U, Bergdahl IA, Johansson I, Hjartåker A, Engeset D, Skeie G, Riboli E, Slimani N. Dietary acrylamide exposure differs greatly across ten countries participating in the European Prospective Investigation into Cancer and Nutrition. EJN (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Ferrari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, P., Freisling, H., Duell, E.J. et al. Challenges in estimating the validity of dietary acrylamide measurements. Eur J Nutr 52, 1503–1512 (2013). https://doi.org/10.1007/s00394-012-0457-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0457-7

Keywords

Navigation