Skip to main content
Log in

Prevention of oxidative DNA damage in inner organs and lymphocytes of rats by green tea extract

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Consumption of green tea (GT) is associated with decreased incidences of specific forms of cancer in humans and it was postulated that its antioxidant (AO) properties may account for these effects. The evidence for AO effects of GT is mainly based on the results from in vitro experiments and on animal studies in which protection against chemically induced damage was monitored.

Aim of the study

The goal of the study was the investigation of the prevention of strand breaks and DNA migration attributable to endogenous oxidation of bases by GT extract (GTE) in inner organs and lymphocytes of untreated rats. In addition, immunological parameters and biochemical markers were monitored.

Methods

DNA migration was measured in hepatocytes, colonocytes and lymphocytes after consumption of a low (1.3 mg/kg bw per day, 5 days) and a high dose (6.5 mg/kg bw per day, 5 days) of GTE in COMET assays (n = 5 animals per group). In addition, immunological parameters (TNF-α, IFN-γ, IL-4 and IL-10), the total AO capacity and oxidized low-density lipoproteins were determined in plasma.

Results

No evidence for reduction in DNA damage was found with a lower dose, whereas with the higher dose, reduction in DNA migration attributable to formamidopyrimidine-DNA-glycosylase sensitive lesions (oxidized purines) and endonuclease III-sensitive sites (oxidized pyrimidines) (58 and 73%) was observed in lymphocytes; also, in colonocytes (reduction in FPG-sensitive sites by 46%) and hepatocytes (decrease in Endo III-sensitive sites by 74%) protective effects were found, while none of the other parameters was altered.

Conclusions

Our results show that a dose of GTE, which is equivalent to consumption of 500 ml GT/p/day in humans protects lymphocytes and to a lesser extent inner organs against oxidative DNA damage, while no effect was seen with a lower dose corresponding to an uptake of 100 ml/p/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AO:

Antioxidative

Endo III:

Endonuclease III

FPG:

Formamidopyrimidine-DNA-glycosylase

GT:

Green tea

GTE:

Green tea extract

IFN-γ:

Interferon gamma

IL:

Interleukin

OxoLDL:

Oxidized low-density lipoprotein

SCGE:

Single-cell gel electrophoresis

TEAC:

Trolox equivalent antioxidative capacity

TNF-α:

Tumor necrosis factor alpha

References

  1. Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea: a review. J Am Coll Nutr 25:79–99

    CAS  Google Scholar 

  2. Zaveri NT (2006) Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 78:2073–2080

    Article  CAS  Google Scholar 

  3. Cao G, Sofic E, Prior RL (1996) Antioxidant capacity of tea and common vegetables. J Agric Food Chem 44:3426–3431

    Article  CAS  Google Scholar 

  4. Henning SM, Niu Y, Liu Y, Lee NH, Hara Y, Thames GD, Minutti RR, Carpenter CL, Wang H, Heber D (2005) Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals. J Nutr Biochem 16:610–616

    Article  CAS  Google Scholar 

  5. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275S–3284S

    CAS  Google Scholar 

  6. Rietveld A, Wiseman S (2003) Antioxidant effects of tea: evidence from human clinical trials. J Nutr 133:3285S–3292S

    CAS  Google Scholar 

  7. Nakachi K, Matsuyama S, Miyake S, Suganuma M, Imai K (2000) Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors 13:49–54

    Article  CAS  Google Scholar 

  8. Setiawan VW, Zhang ZF, Yu GP, Lu QY, Li YL, Lu ML, Wang MR, Guo CH, Yu SZ, Kurtz RC, Hsieh CC (2001) Protective effect of green tea on the risks of chronic gastritis and stomach cancer. Int J Cancer 92:600–604

    Article  CAS  Google Scholar 

  9. Sasaki YF, Kawaguchi S, Kamaya A, Ohshita M, Kabasawa K, Iwama K, Taniguchi K, Tsuda S (2002) The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res 519:103–119

    CAS  Google Scholar 

  10. Somogyi A, Rosta K, Pusztai P, Tulassay Z, Nagy G (2007) Antioxidant measurements. Physiol Meas 28:R41–R55

    Article  Google Scholar 

  11. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  CAS  Google Scholar 

  12. Chan YC, Hosoda K, Tsai CJ, Yamamoto S, Wang MF (2006) Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice. J Nutr Sci Vitaminol (Tokyo) 52:266–273

    Article  CAS  Google Scholar 

  13. Hasegawa R, Chujo T, Sai-Kato K, Umemura T, Tanimura A, Kurokawa Y (1995) Preventive effects of green tea against liver oxidative DNA damage and hepatotoxicity in rats treated with 2-nitropropane. Food Chem Toxicol 33:961–970

    Article  CAS  Google Scholar 

  14. Hisano M, Yamaguchi K, Inoue Y, Ikeda Y, Iijima M, Adachi M, Shimamura T (2003) Inhibitory effect of catechin against the superantigen staphylococcal enterotoxin B (SEB). Arch Dermatol Res 295:183–189

    Article  CAS  Google Scholar 

  15. Collins A, Dusinska M, Franklin M, Somorovska M, Petrovska H, Duthie S, Fillion L, Panayiotidis M, Raslova K, Vaughan N (1997) Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutagen 30:139–146

    Article  CAS  Google Scholar 

  16. Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab SY, Collins AR, Escobar P, Honma M, Kumaravel TS, Nakajima M, Sasaki YF, Thybaud V, Uno Y, Vasquez M, Hartmann A (2007) Fourth International Workgroup on Genotoxicity Testing: results of the in vivo comet assay workgroup. Mutat Res 627:31–35

    CAS  Google Scholar 

  17. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond) 84:407–412

    CAS  Google Scholar 

  18. Hofer G, Lichtenberg D, Hermetter A (1995) A new fluorescence method for the continuous determination of surface lipid oxidation in lipoproteins and plasma. Free Radic Res 23:317–327

    Article  CAS  Google Scholar 

  19. Mayer B, Schumacher M, Brandstatter H, Wagner FS, Hermetter A (2001) High-throughput fluorescence screening of antioxidative capacity in human serum. Anal Biochem 297:144–153

    Article  CAS  Google Scholar 

  20. Majer BJ, Kassie F, Sasaki Y, Pfau W, Glatt H, Meinl W, Darroudi F, Knasmuller S (2004) Investigation of the genotoxic effects of 2-amino-9H-pyrido[2, 3-b]indole in different organs of rodents and in human derived cells. J Chromatogr B Analyt Technol Biomed Life Sci 802:167–173

    Article  CAS  Google Scholar 

  21. Na HK, Surh YJ (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 46:1271–1278

    Article  CAS  Google Scholar 

  22. Knasmuller S, Nersesyan A, Misik M, Gerner C, Mikulits W, Ehrlich V, Hoelzl C, Szakmary A, Wagner KH (2008) Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br J Nutr 99(E Suppl 1):ES3–ES52

    Google Scholar 

  23. Hoelzl C, Knasmuller S, Misik M, Collins A, Dusinska M, Nersesyan A (2009) Use of single cell gel electrophoresis assays for the detection of DNA-protective effects of dietary factors in humans: recent results and trends. Mutat Res 681:68–79

    Article  CAS  Google Scholar 

  24. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  Google Scholar 

  25. Gedik CM, Boyle SP, Wood SG, Vaughan NJ, Collins AR (2002) Oxidative stress in humans: validation of biomarkers of DNA damage. Carcinogenesis 23:1441–1446

    Article  CAS  Google Scholar 

  26. Xu Y, Ho CT, Amin SG, Han C, Chung FL (1992) Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in A/J mice by green tea and its major polyphenol as antioxidants. Cancer Res 52:3875–3879

    CAS  Google Scholar 

  27. Tamura K, Nakae D, Horiguchi K, Akai H, Kobayashi Y, Satoh H, Tsujiuchi T, Denda A, Konishi Y (1997) Inhibition by green tea extract of diethylnitrosamine-initiated but not choline-deficient, l-amino acid-defined diet-associated development of putative preneoplastic, glutathione S-transferase placental form-positive lesions in rat liver. Jpn J Cancer Res 88:356–362

    CAS  Google Scholar 

  28. Takabayashi F, Harada N, Tahara S, Kaneko T, Hara Y (1997) Effect of green tea catechins on the amount of 8-hydroxydeoxyguanosine (8-OHdG) in pancreatic and hepatic DNA after a single administration of N-nitrosobis(2-oxopropyl)amine (BOP). Pancreas 15:109–112

    Article  CAS  Google Scholar 

  29. Inagake M, Yamane T, Kitao Y, Oya K, Matsumoto H, Kikuoka N, Nakatani H, Takahashi T, Nishimura H, Iwashima A (1995) Inhibition of 1, 2-dimethylhydrazine-induced oxidative DNA damage by green tea extract in rat. Jpn J Cancer Res 86:1106–1111

    CAS  Google Scholar 

  30. Lodovici M, Casalini C, De Filippo C, Copeland E, Xu X, Clifford M, Dolara P (2000) Inhibition of 1, 2-dimethylhydrazine-induced oxidative DNA damage in rat colon mucosa by black tea complex polyphenols. Food Chem Toxicol 38:1085–1088

    Article  CAS  Google Scholar 

  31. Giovannelli L, Testa G, De Filippo C, Cheynier V, Clifford MN, Dolara P (2000) Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo. Eur J Nutr 39:207–212

    Article  CAS  Google Scholar 

  32. Xue KX, Wang S, Ma GJ, Zhou P, Wu PQ, Zhang RF, Xu Z, Chen WS, Wang YQ (1992) Micronucleus formation in peripheral-blood lymphocytes from smokers and the influence of alcohol- and tea-drinking habits. Int J Cancer 50:702–705

    Article  CAS  Google Scholar 

  33. Shim JS, Kang MH, Kim YH, Roh JK, Roberts C, Lee IP (1995) Chemopreventive effect of green tea (Camellia sinensis) among cigarette smokers. Cancer Epidemiol Biomarkers Prev 4:387–391

    CAS  Google Scholar 

  34. Glei M, Habermann N, Osswald K, Seidel C, Persin C, Jahreis G, Pool-Zobel BL (2005) Assessment of DNA damage and its modulation by dietary and genetic factors in smokers using the Comet assay: a biomarker model. Biomarkers 10:203–217

    Article  CAS  Google Scholar 

  35. Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P (2009) In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24:245–251

    Article  CAS  Google Scholar 

  36. Speit G, Zeller J, Schmid O, Elhajouji A, Ma-Hock L, Neuss S (2009) Inhalation of formaldehyde does not induce systemic genotoxic effects in rats. Mutat Res 677:76–85

    CAS  Google Scholar 

  37. He P, Noda Y, Sugiyama K (2001) Green tea suppresses lipopolysaccharide-induced liver injury in d-galactosamine-sensitized rats. J Nutr 131:1560–1567

    CAS  Google Scholar 

  38. Abboud PA, Hake PW, Burroughs TJ, Odoms K, O’Connor M, Mangeshkar P, Wong HR, Zingarelli B (2008) Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. Eur J Pharmacol 579:411–417

    Article  CAS  Google Scholar 

  39. de Maat MP, Pijl H, Kluft C, Princen HM (2000) Consumption of black and green tea had no effect on inflammation, haemostasis and endothelial markers in smoking healthy individuals. Eur J Clin Nutr 54:757–763

    Article  Google Scholar 

  40. Hodgson JM, Puddey IB, Croft KD, Burke V, Mori TA, Caccetta RA, Beilin LJ (2000) Acute effects of ingestion of black and green tea on lipoprotein oxidation. Am J Clin Nutr 71:1103–1107

    CAS  Google Scholar 

  41. Princen HM, van Duyvenvoorde W, Buytenhek R, Blonk C, Tijburg LB, Langius JA, Meinders AE, Pijl H (1998) No effect of consumption of green and black tea on plasma lipid and antioxidant levels and on LDL oxidation in smokers. Arterioscler Thromb Vasc Biol 18:833–841

    CAS  Google Scholar 

  42. van het Hof KH, de Boer HS, Wiseman SA, Lien N, Westrate JA, Tijburg LB (1997) Consumption of green or black tea does not increase resistance of low-density lipoprotein to oxidation in humans. Am J Clin Nutr 66:1125–1132

    Google Scholar 

  43. Sung H, Min WK, Lee W, Chun S, Park H, Lee YW, Jang S, Lee DH (2005) The effects of green tea ingestion over four weeks on atherosclerotic markers. Ann Clin Biochem 42:292–297

    Article  CAS  Google Scholar 

  44. Young JF, Dragstedt LO, Haraldsdottir J, Daneshvar B, Kall MA, Loft S, Nilsson L, Nielsen SE, Mayer B, Skibsted LH, Huynh-Ba T, Hermetter A, Sandstrom B (2002) Green tea extract only affects markers of oxidative status postprandially: lasting antioxidant effect of flavonoid-free diet. Br J Nutr 87:343–355

    Article  CAS  Google Scholar 

  45. Dotan Y, Lichtenberg D, Pinchuk I (2004) Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 43:200–227

    Article  CAS  Google Scholar 

  46. Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, Miyamoto Y, Shimizu M (2000) Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 48:5618–5623

    Article  CAS  Google Scholar 

  47. Serrano J, Boada J, Ayala V, Gonzalo H, Jove M, Cacabelos D, Naudi A, Ilieva E, Pamplona R, Portero-Otin M, Delgado M, Espinel A (2008) Polyphenols antioxidant capacity: theory, practice and reality—in vitro, plasma and intracellular measurements of lipoxidative damage. In: COST B35 conference, lipid peroxidation associated disorders, development and validation of novel antioxidant substances for the prevention of lipid peroxidation. Kaunas, Lithuania

  48. Shimizu M, Kobayashi Y, Suzuki M, Satsu H, Miyamoto Y (2000) Regulation of intestinal glucose transport by tea catechins. Biofactors 13:61–65

    Article  CAS  Google Scholar 

  49. Glei M, Pool-Zobel BL (2006) The main catechin of green tea, (−)-epigallocatechin-3-gallate (EGCG), reduces bleomycin-induced DNA damage in human leucocytes. Toxicol Vitro 20:295–300

    Article  CAS  Google Scholar 

  50. Schwarz A, Maeda A, Gan D, Mammone T, Matsui MS, Schwarz T (2008) Green tea phenol extracts reduce UVB-induced DNA damage in human cells via interleukin-12. Photochem Photobiol 84:350–355

    Article  CAS  Google Scholar 

  51. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  Google Scholar 

  52. Collins AR (1999) Oxidative DNA damage, antioxidants, and cancer. Bioessays 21:238–246

    Article  CAS  Google Scholar 

  53. Valverde M, Rojas E (2009) The Comet assay in human biomonitoring. In: Dhawan A, Anderson D (eds) The Comet assay in toxicology. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  54. Wu CD, Wei GX (2002) Tea as a functional food for oral health. Nutrition 18:443–444

    Article  CAS  Google Scholar 

  55. Brown MD (1999) Green tea (Camellia sinensis) extract and its possible role in the prevention of cancer. Altern Med Rev 4:360–370

    CAS  Google Scholar 

  56. Fujiki H, Suganuma M, Imai K, Nakachi K (2002) Green tea: cancer preventive beverage and/or drug. Cancer Lett 188:9–13

    Article  CAS  Google Scholar 

  57. Weisburger JH, Chung FL (2002) Mechanisms of chronic disease causation by nutritional factors and tobacco products and their prevention by tea polyphenols. Food Chem Toxicol 40:1145–1154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Alfred Dutter for administration of the GTE to the animals by gavage and M. Dušínska (Institute of Preventive and Clinical Medicine, Bratislava, Slowakia) for providing the lesion-specific enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Knasmüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kager, N., Ferk, F., Kundi, M. et al. Prevention of oxidative DNA damage in inner organs and lymphocytes of rats by green tea extract. Eur J Nutr 49, 227–234 (2010). https://doi.org/10.1007/s00394-009-0068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-009-0068-0

Keywords

Navigation