Skip to main content

Advertisement

Log in

Monocyte–platelet aggregates and CD11b expression as markers for thrombogenicity in atrial fibrillation

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

A strong interdependence is known between atrial fibrillation (AF), inflammation and thrombogenesis. Monocyte–platelet aggregates (MPAs) are sensitive markers of platelets and monocyte activation. It is not known whether MPAs are associated with thrombogenicity in AF. Therefore, we examined differences in the content of MPAs and CD11b expression in patients with AF in dependence of the presence of atrial thrombus formation.

Methods

107 patients with symptomatic AF underwent transesophageal echocardiography (TEE) before planned cardioversion or pulmonary vein isolation. Flow-cytometric quantification analysis was done on the day of performed TEE to determine the content of MPAs and the expression of CD11b on monocytes and granulocytes.

Results

Compared to patients without thrombus (n = 80) those with an echocardiographic proven left atrium (LA) thrombus (n = 27) showed an increased extent of the risk factors age, diabetes and heart failure. The content of MPAs (147 ± 12 vs. 311 ± 29 cells/µl, p < 0.001) as well as the CD11b expression on monocytes (p < 0.05) and granulocytes (p < 0.05) were strongly associated with the existence of a LA thrombus. The content of MPAs and the CD11b expression remained independent predictors for LA thrombus after adjustment in logistic regression analysis and negatively correlated with left atrial appendage flow velocity. MPAs above 170 cells/µl (OR 34.2, p = 0.01) had a sensitivity of 96 % and a specificity of 73 % for predicting LA-thrombus.

Conclusions

The content of MPAs and the CD11b expression on monocytes and granulocytes are increased in AF-patients with proven thrombus formation. They seem to be appropriate biomarkers for stratification of thromboembolic risk in patients with AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kornej J, Hindricks G, Shoemaker MB, Husser D, Arya A, Sommer P, Rolf S, Saavedra P, Kanagasundram A, Patrick WS, Montgomery J, Ellis CR, Darbar D, Bollmann A (2015) The APPLE score: a novel and simple score for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation. Clin Res Cardiol 104(10):871–876

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meinertz T, Kirch W, Rosin L, Pittrow D, Willich SN, Kirchhof P (2011) Management of atrial fibrillation by primary care physicians in Germany: baseline results of the ATRIUM registry. Clin Res Cardiol 100:897–905

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kirchhof P, Schmalowsky J, Pittrow D, Rosin L, Kirch W, Wegscheider K, Meinertz T (2014) Management of patients with atrial fibrillation by primary-care physicians in Germany: 1-year results of the ATRIUM registry. Clin Cardiol 37:277–284

    Article  PubMed  Google Scholar 

  4. Blackshear JL, Odell JA (1996) Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg 61:755–759

    Article  CAS  PubMed  Google Scholar 

  5. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 130:2071–2104

    Article  PubMed  Google Scholar 

  6. Calkins H, Brugada J, Packer DL, Cappato R, Chen SA, Crijns HJ, Damiano RJ Jr, Davies DW, Haines DE, Haissaguerre M, Iesaka Y, Jackman W, Jais P, Kottkamp H, Kuck KH, Lindsay BD, Marchlinski FE, McCarthy PM, Mont JL, Morady F, Nademanee K, Natale A, Pappone C, Prystowsky E, Raviele A, Ruskin JN, Shemin RJ (2007) HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 4:816–861

    Article  PubMed  Google Scholar 

  7. Saad EB, d’Avila A, Costa IP, Aryana A, Slater C, Costa RE, Inacio LA Jr, Maldonado P, Neto DM, Camiletti A, Camanho LE, Polanczyk CA (2011) Very low risk of thromboembolic events in patients undergoing successful catheter ablation of atrial fibrillation with a CHADS2 score</=3: a long-term outcome study. Circ Arrhythm Electrophysiol 4:615–621

    Article  PubMed  Google Scholar 

  8. Friedrichs K, Klinke A, Baldus S (2011) Inflammatory pathways underlying atrial fibrillation. Trends Mol Med 17:556–563

    Article  CAS  PubMed  Google Scholar 

  9. Greif M, Von ZF, Wakili R, Tittus J, Becker C, Helbig S, Laubender RP, Schwarz W, D’Anastasi M, Schenzle J, Leber AW, Becker A (2013) Increased pericardial adipose tissue is correlated with atrial fibrillation and left atrial dilatation. Clin Res Cardiol 102:555–562

  10. Hu YF, Chen YJ, Lin YJ, Chen SA (2015) Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol 12(4):230–243

    Article  CAS  PubMed  Google Scholar 

  11. Jiang Z, Dai L, Song Z, Li H, Shu M (2013) Association between C-reactive protein and atrial fibrillation recurrence after catheter ablation: a meta-analysis. Clin Cardiol 36:548–554

    Article  PubMed  Google Scholar 

  12. Lim HS, Willoughby SR, Schultz C, Gan C, Alasady M, Lau DH, Leong DP, Brooks AG, Young GD, Kistler PM, Kalman JM, Worthley MI, Sanders P (2013) Effect of atrial fibrillation on atrial thrombogenesis in humans: impact of rate and rhythm. J Am Coll Cardiol 61:852–860

    Article  PubMed  Google Scholar 

  13. Yao SY, Chu JM, Chen KP, Tang M, Fang PH, Wang FZ, Zhang S (2009) Inflammation in lone atrial fibrillation. Clin Cardiol 32:94–98

    Article  PubMed  Google Scholar 

  14. Yalcin MU, Gurses KM, Kocyigit D, Kesikli SA, Ates AH, Evranos B, Yorgun H, Sahiner ML, Kaya EB, Oto MA, Guc D, Ozer N, Aytemir K (2015) Elevated M2-muscarinic and beta1-adrenergic receptor autoantibody levels are associated with paroxysmal atrial fibrillation. Clin Res Cardiol 104:226–233

    Article  CAS  PubMed  Google Scholar 

  15. Burdess A, Michelsen AE, Brosstad F, Fox KA, Newby DE, Nimmo AF (2012) Platelet activation in patients with peripheral vascular disease: reproducibility and comparability of platelet markers. Thromb Res 129:50–55

    Article  CAS  PubMed  Google Scholar 

  16. Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI (2001) Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 104:1533–1537

    Article  CAS  PubMed  Google Scholar 

  17. Shantsila E, Lip GY (2009) The role of monocytes in thrombotic disorders. Insights from tissue factor, monocyte-platelet aggregates and novel mechanisms. Thromb Haemost 102:916–924

    CAS  PubMed  Google Scholar 

  18. Wrigley BJ, Shantsila E, Tapp LD, Lip GY (2013) Increased formation of monocyte-platelet aggregates in ischemic heart failure. Circ Heart Fail 6:127–135

    Article  CAS  PubMed  Google Scholar 

  19. Lukasik M, Dworacki G, Kufel-Grabowska J, Watala C, Kozubski W (2012) Upregulation of CD40 ligand and enhanced monocyte-platelet aggregate formation are associated with worse clinical outcome after ischaemic stroke. Thromb Haemost 107:346–355

    Article  CAS  PubMed  Google Scholar 

  20. Chiang CH, Huang CC, Chan WL, Huang PH, Chen YC, Chen TJ, Lin SJ, Chen JW, Leu HB (2013) Herpes simplex virus infection and risk of atrial fibrillation: a nationwide study. Int J Cardiol 164:201–204

    Article  PubMed  Google Scholar 

  21. Hu YF, Yeh HI, Tsao HM, Tai CT, Lin YJ, Chang SL, Lo LW, Tuan TC, Tzeng CH, Huang SH, Lin YK, Chen SA (2011) Impact of circulating monocyte CD36 level on atrial fibrillation and subsequent catheter ablation. Heart Rhythm 8:650–656

    Article  PubMed  Google Scholar 

  22. Lazzerini PE, Capecchi PL, Acampa M, Galeazzi M, Laghi-Pasini F (2014) Arrhythmic risk in rheumatoid arthritis: the driving role of systemic inflammation. Autoimmun Rev

  23. Richter B, Gwechenberger M, Socas A, Zorn G, Albinni S, Marx M, Bergler-Klein J, Binder T, Wojta J, Gossinger HD (2012) Markers of oxidative stress after ablation of atrial fibrillation are associated with inflammation, delivered radiofrequency energy and early recurrence of atrial fibrillation. Clin Res Cardiol 101:217–225

    Article  CAS  PubMed  Google Scholar 

  24. Friedrichs K, Adam M, Remane L, Mollenhauer M, Rudolph V, Rudolph TK, Andrie RP, Stockigt F, Schrickel JW, Ravekes T, Deuschl F, Nickenig G, Willems S, Baldus S, Klinke A (2014) Induction of atrial fibrillation by neutrophils critically depends on CD11b/CD18 integrins. PLoS One 9:e89307

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A (1997) Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96:1180–1184

    Article  CAS  PubMed  Google Scholar 

  26. Passacquale G, Vamadevan P, Pereira L, Hamid C, Corrigall V, Ferro A (2011) Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One 6:e25595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 28:1–39

    Article  PubMed  Google Scholar 

  28. Providencia R, Trigo J, Paiva L, Barra S (2013) The role of echocardiography in thromboembolic risk assessment of patients with nonvalvular atrial fibrillation. J Am Soc Echocardiogr 26:801–812

    Article  PubMed  Google Scholar 

  29. Wasmer K, Kobe J, Dechering D, Milberg P, Pott C, Vogler J, Stypmann J, Waltenberger J, Monnig G, Breithardt G, Eckardt L (2013) CHADS(2) and CHA(2)DS (2)-VASc score of patients with atrial fibrillation or flutter and newly detected left atrial thrombus. Clin Res Cardiol 102:139–144

    Article  PubMed  Google Scholar 

  30. Heeringa J, Conway DS, van der Kuip DA, Hofman A, Breteler MM, Lip GY, Witteman JC (2006) A longitudinal population-based study of prothrombotic factors in elderly subjects with atrial fibrillation: the Rotterdam Study 1990-1999. J Thromb Haemost 4:1944–1949

    Article  CAS  PubMed  Google Scholar 

  31. Lip GY, Patel JV, Hughes E, Hart RG (2007) High-sensitivity C-reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors, stroke risk stratification schema, and prognosis. Stroke 38:1229–1237

    Article  CAS  PubMed  Google Scholar 

  32. Conway DS, Buggins P, Hughes E, Lip GY (2004) Relation of interleukin-6, C-reactive protein, and the prothrombotic state to transesophageal echocardiographic findings in atrial fibrillation. Am J Cardiol 93(1368–73):A6

    Google Scholar 

  33. Hermida J, Lopez FL, Montes R, Matsushita K, Astor BC, Alonso A (2012) Usefulness of high-sensitivity C-reactive protein to predict mortality in patients with atrial fibrillation (from the Atherosclerosis Risk In Communities [ARIC] Study). Am J Cardiol 109:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J, Valeri CR (1996) In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc Natl Acad Sci U S A 93:11877–11882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lip GY, Frison L, Halperin JL, Lane DA (2010) Identifying patients at high risk for stroke despite anticoagulation: a comparison of contemporary stroke risk stratification schemes in an anticoagulated atrial fibrillation cohort. Stroke 41:2731–2738

    Article  CAS  PubMed  Google Scholar 

  36. Igarashi Y, Kashimura K, Makiyama Y, Sato T, Ojima K, Aizawa Y (2001) Left atrial appendage dysfunction in chronic nonvalvular atrial fibrillation is significantly associated with an elevated level of brain natriuretic peptide and a prothrombotic state. Jpn Circ J 65:788–792

    Article  CAS  PubMed  Google Scholar 

  37. McCready JW, Nunn L, Lambiase PD, Ahsan SY, Segal OR, Rowland E, Lowe MD, Chow AW (2010) Incidence of left atrial thrombus prior to atrial fibrillation ablation: is pre-procedural transoesophageal echocardiography mandatory? Europace 12:927–932

    Article  PubMed  Google Scholar 

  38. Hayashi M, Takeshita K, Inden Y, Ishii H, Cheng XW, Yamamoto K, Murohara T (2011) Platelet activation and induction of tissue factor in acute and chronic atrial fibrillation: involvement of mononuclear cell-platelet interaction. Thromb Res 128:e113–e118

    Article  CAS  PubMed  Google Scholar 

  39. Kirchhofer D, Riederer MA, Baumgartner HR (1997) Specific accumulation of circulating monocytes and polymorphonuclear leukocytes on platelet thrombi in a vascular injury model. Blood 89:1270–1278

    CAS  PubMed  Google Scholar 

  40. Simon DI, Ezratty AM, Francis SA, Rennke H, Loscalzo J (1993) Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): a nonplasmin fibrinolytic pathway. Blood 82:2414–2422

    CAS  PubMed  Google Scholar 

  41. Penn MS, Topol EJ (2001) Tissue factor, the emerging link between inflammation, thrombosis, and vascular remodeling. Circ Res 89:1–2

    Article  CAS  PubMed  Google Scholar 

  42. Kaireviciute D, Blann AD, Balakrishnan B, Lane DA, Patel JV, Uzdavinys G, Norkunas G, Kalinauskas G, Sirvydis V, Aidietis A, Lip GY (2010) Characterisation and validity of inflammatory biomarkers in the prediction of post-operative atrial fibrillation in coronary artery disease patients. Thromb Haemost 104:122–127

    Article  CAS  PubMed  Google Scholar 

  43. Hammond DA, Smotherman C, Jankowski CA, Tan S, Osian O, Kraemer D, DeLosSantos M (2015) Short-course of ranolazine prevents postoperative atrial fibrillation following coronary artery bypass grafting and valve surgeries. Clin Res Cardiol 104:410–417

    Article  CAS  PubMed  Google Scholar 

  44. Simopoulos V, Tagarakis G, Hatziefthimiou A, Skoularigis I, Triposkiadis F, Trantou V, Tsilimingas N, Aidonidis I (2015) Effectiveness of aldosterone antagonists for preventing atrial fibrillation after cardiac surgery in patients with systolic heart failure: a retrospective study. Clin Res Cardiol 104:31–37

    Article  CAS  PubMed  Google Scholar 

  45. Ozaydin M, Peker O, Erdogan D, Akcay S, Yucel H, Icli A, Ceyhan BM, Sutcu R, Uysal BA, Varol E, Dogan A, Okutan H (2014) Oxidative status, inflammation, and postoperative atrial fibrillation with metoprolol vs carvedilol or carvedilol plus N-acetyl cysteine treatment. Clin Cardiol 37:300–306

    Article  PubMed  Google Scholar 

  46. Deftereos S, Giannopoulos G, Efremidis M, Kossyvakis C, Katsivas A, Panagopoulou V, Papadimitriou C, Karageorgiou S, Doudoumis K, Raisakis K, Kaoukis A, Alexopoulos D, Manolis AS, Stefanadis C, Cleman MW (2014) Colchicine for prevention of atrial fibrillation recurrence after pulmonary vein isolation: mid-term efficacy and effect on quality of life. Heart Rhythm 11:620–628

    Article  PubMed  Google Scholar 

  47. Marik PE, Fromm R (2009) The efficacy and dosage effect of corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a systematic review. J Crit Care 24:458–463

    Article  CAS  PubMed  Google Scholar 

  48. Yoo D, Vinten-Johansen J, Schmarkey LS, Whalen SP, Bone CC, Katzmark SL, Langberg J (2010) Adhesive epicardial corticosteroids prevent postoperative atrial fibrillation. Circ Arrhythm Electrophysiol 3:505–510

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

C.P. was supported by the Deutsche Herzstiftung (Wilhelm P. Winterstein Award). The authors want to thank Peggy Barthel and Lydia Schwab for excellent technical assistance with flow cytometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Pfluecke.

Ethics declarations

Conflict of interest

None of the authors have conflicts of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfluecke, C., Tarnowski, D., Plichta, L. et al. Monocyte–platelet aggregates and CD11b expression as markers for thrombogenicity in atrial fibrillation. Clin Res Cardiol 105, 314–322 (2016). https://doi.org/10.1007/s00392-015-0922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-015-0922-4

Keywords

Navigation