Skip to main content
Log in

RAGE influences obesity in mice

Effects of the presence of RAGE on weight gain, AGE accumulation, and insulin levels in mice on a high fat diet

RAGE beeinflusst Adipositas bei Mäusen

Einfluss des Rezeptors für AGEs (RAGE) auf Gewichtszunahme, Insulin- und AGE-Akkumulation in Mäusen unter Hochfettdiät

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Background

The metabolic syndrome is defined by the presence of obesity, insulin resistance, dyslipidemia, and hypertension. Advanced glycation end products (AGEs) are stable end products of the Maillard reaction, whereby AGE accumulation is considered not only a biomarker of aging but is also associated with several degenerative diseases. AGEs are recognized by several receptor molecules of which the receptor of AGEs (RAGE) is currently the most intensively studied receptor. Activation of RAGE causes an unfavorable proinflammatory state and deletion of RAGE in diabetic animals has been reported to protect against atherosclerosis. AGEs and a high fat diet are associated with cardiovascular diseases, whereas is still not clear whether a direct link between high fat nutrition and AGEs exists in vivo.

Materials and methods

C57BL/6 and C57BL/6 RAGE −/− mice were fed a high fat diet to induce obesity. Weight, insulin, lipid levels, AGE modifications, and cardiac gene expression were analyzed.

Results

The absence of RAGE resulted in accelerated weight gain, increased plasma cholesterol, and higher insulin levels in obese mice. The hearts of normal and obese RAGE −/− mice contained lower levels of the AGE arginine–pyrimidine and 3DG-imidazolone than RAGE + / + animals. RAGE −/− mice also exhibited lower expression of the genes encoding the antioxidative enzymes MnSOD, Cu/ZnSOD, and ceruloplasmin in cardiac tissue, whereas the AGE receptors AGER-1, -2, and -3 were equally expressed in both genotypes. Obese mice of both strains expressed increased amounts of AGER-2. Only obese RAGE + / + mice exhibited a reduced mRNA accumulation of Cu/Zn SOD.

Conclusion

These data suggest that RAGE is involved in the development of obesity and insulin resistance.

Zusammenfassung

Hintergrund

Das metabolische Syndrom ist durch Übergewicht, Insulinresistenz, Dyslipämie und Bluthochdruck charakterisiert. Die „advanced glycation end products“ (Glykierungsendprodukte, AGEs) sind Endprodukte der Maillard-Reaktion, deren Akkumulation als Biomarker des Alterns gilt und mit degenerativen Erkrankungen assoziiert ist. Die AGEs werden von spezifischen Bindemolekülen erkannt, von denen RAGE derzeit der meistuntersuchte Rezeptor ist. Die RAGE-Aktivierung verursacht einen unerwünschten proinflammatorischen Zustand und diabetische Mäuse ohne RAGE sind offenbar gegen Artherosklerose geschützt. Sowohl AGEs als auch Hochfettdiät sind mit kardiovaskulären Erkrankungen verknüpft, aber es ist nicht klar, ob eine direkte Verbindung zwischen fettreicher Ernährung und AGE-Akkumulation existiert.

Material und Methoden

Mäuse mit und ohne das RAGE-Gen wurden mit einer fettreichen Diät gefüttert. Gewicht, Plasmainsulin und -Lipidgehalte sowie AGE-Modifikationen und Genexpression im Herzen wurden bestimmt.

Ergebnisse

Das Fehlen von RAGE verursachte eine schnellere Gewichtszunahme und in adipösen Tieren erhöhte Plasmainsulin- und -Cholesterinwerte. Die Herzen normalgewichtiger und adipöser RAGE-Knock-out-Mäuse enthielten geringere Mengen der AGEs Argininpyrimidin und 3-DG-Imidazolon als die Herzen der Tiere mit RAGE (+/+). Die Expression der Gene für die AGE-Rezeptoren AGER-1, -2 und -3 war in den Herzen beider Mausstämme vergleichbar, wohingegen die Gene für die antioxidativ wirkenden Enzyme MnSOD, Cu/ZnSOD und Ceruloplasmin in RAGE-K.-o.-Mäusen geringer exprimiert waren. Bei den adipösen Tieren zeigten nur die RAGE + / +- Mäuse eine reduzierte Akkumulation der Cu/ZnSOD im Vergleich zur Kontrollgruppe. AGER-2 wurde hingegen in adipösen Tieren beider Stämme verstärkt exprimiert.

Schlussfolgerung

Die Ergebnisse lassen vermuten, dass RAGE die Entwicklung von Adipositas und Insulinresistenz beeinflusst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdel-Wahab YH, O’harte FP, Boyd AC et al (1997) Glycation of insulin results in reduced biological activity in mice. Acta Diabetol 34:265–270

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed N, Dobler D, Dean M et al (2005) Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem 280:5724–5732

    Article  PubMed  CAS  Google Scholar 

  3. Aschner P (2010) Metabolic syndrome as a risk factor for diabetes. Expert Rev Cardiovasc Ther 8:407–412

    Article  PubMed  Google Scholar 

  4. Barma P, Bhattacharya S, Bhattacharya A et al (2009) Lipid induced overexpression of NF-kappaB in skeletal muscle cells is linked to insulin resistance. Biochim Biophys Acta 1792:190–200

    PubMed  CAS  Google Scholar 

  5. Bierhaus A, Humpert PM, Morcos M et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    Article  PubMed  CAS  Google Scholar 

  6. Bierhaus A, Stoyanov S, Haag GM et al (2006) RAGE-deficiency reduces diabetes-associated impairment of glyoxalase-1 in neuronal cells. Diabetes 55:A511-A511

    Article  Google Scholar 

  7. Constien R, Forde A, Liliensiek B et al (2001) Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30:36–44

    Article  PubMed  CAS  Google Scholar 

  8. Gupta A, Gupta V (2010) Metabolic syndrome: what are the risks for humans? Biosci Trends 4:204–212

    PubMed  Google Scholar 

  9. Kawauchi K, Araki K, Tobiume K et al (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    Article  PubMed  CAS  Google Scholar 

  10. Li Sy, Du M, Dolence Ek et al (2005) Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell 4:57–64

    Article  PubMed  CAS  Google Scholar 

  11. Liliensiek B, Weigand MA, Bierhaus A et al (2004) Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113:1641–1650

    PubMed  CAS  Google Scholar 

  12. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  13. Mulder DJ, Van Haelst PL, Graaff R et al (2009) Skin autofluorescence is elevated in acute myocardial infarction and is associated with the one-year incidence of major adverse cardiac events. Neth Heart J 17:162–168

    Article  PubMed  CAS  Google Scholar 

  14. Muniyappa R, Lee S, Chen H et al (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 294:E15–E26

    Article  PubMed  CAS  Google Scholar 

  15. Nagai R, Fujiwara Y, Mera K et al (2008) Usefulness of antibodies for evaluating the biological significance of AGEs. Ann N Y Acad Sci 1126:38–41

    Article  PubMed  CAS  Google Scholar 

  16. Nass N, Bartling B, Navarrete Santos A et al (2007) Advanced glycation end products, diabetes and ageing. Z Gerontol Geriatr 40:349–356

    Article  PubMed  CAS  Google Scholar 

  17. Nass N, Kukat A, Seibel P et al (2009) Advanced glycation end product accumulation in rho(0) cells without a functional respiratory chain. Biol Chem 390:915–919

    Article  PubMed  CAS  Google Scholar 

  18. Nass N, Vogel K, Hofmann B et al (2010) Glycation of PDGF results in decreased biological activity. Int J Biochem Cell Biol 42:749–754

    Article  PubMed  CAS  Google Scholar 

  19. Ruhs S, Nass N, Bartling B et al (2010) Preconditioning with Maillard reaction products improves antioxidant defence leading to increased stress tolerance in cardiac cells. Exp Gerontol 45:752–762

    Article  PubMed  CAS  Google Scholar 

  20. Ruhs S, Nass N, Somoza V et al (2007) Maillard reaction products enriched food extract reduce the expression of myofibroblast phenotype markers. Mol Nutr Food Res 51:488–495

    Article  PubMed  CAS  Google Scholar 

  21. Schmitt A, Gasic-Milenkovic J, Schmitt J (2005) Characterization of advanced glycation end products: mass changes in correlation to side chain modifications. Anal Biochem 346:101–106

    Article  PubMed  CAS  Google Scholar 

  22. Schmitt A, Schmitt J, Munch G et al (2005) Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics. Anal Biochem 338:201–215

    Article  PubMed  CAS  Google Scholar 

  23. Smit AJ, Hartog JW, Voors AA et al (2008) Advanced glycation endproducts in chronic heart failure. Ann N Y Acad Sci 1126:225–230

    Article  PubMed  CAS  Google Scholar 

  24. Soro-Paavonen A, Watson Am, LL J et al (2008) Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57:2461–2469

    Article  PubMed  CAS  Google Scholar 

  25. Thornalley PJ (1998) Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112:137–151

    Google Scholar 

  26. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems–role in ageing and disease. Drug Metabol Drug Interact 23:125–150

    Article  PubMed  CAS  Google Scholar 

  27. Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25:275–281

    Article  PubMed  CAS  Google Scholar 

  28. Tikellis C, Thomas MC, Harcourt BE et al (2008) Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am J Physiol Endocrinol Metab 295:E323–E330

    Article  PubMed  CAS  Google Scholar 

  29. Vlassara H (2005) Advanced glycation in health and disease: role of the modern environment. Ann N Y Acad Sci 1043:452–460

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Nawroth and Prof. Arnold (DKFZ, Heidelberg, Germany) for the opportunity to use the RAGE −/− mouse strain for this work. Excellent technical assistance by Thekla Wangemann is gratefully acknowledged. This work was funded by a DFG-grant to A.S. (DFG, Si-1317/1–1) and B.L. by the “Freunde und Förderer der Martin-Luther-Universität Halle-Wittenberg,” the “Stiftungsfond Dresdner Bank im Stifterverband für die Deutsche Wissenschaft” and the “Stadt- und Kreissparkasse Halle.”

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuner, B., Max, M., Thamm, K. et al. RAGE influences obesity in mice. Z Gerontol Geriat 45, 102–108 (2012). https://doi.org/10.1007/s00391-011-0279-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-011-0279-x

Keywords

Schlüsselwörter

Navigation