Skip to main content
Log in

Septische Kardiomyopathie

Septic cardiomyopathy

  • ÜBERSICHT
  • Published:
Intensivmedizin und Notfallmedizin

Summary

The existence of human septic myocardial depression was only unequivocally proven in the 1980s by the group of Parrillo, utilizing a nuclear imaging technique in intensive care patients. Heart failure in sepsis is frequently masked by a seemingly normal cardiac output. However, relative to the lowered systemic vascular resistance—resulting in a reduced afterload, cardiac outputs and ventricular ejection fractions of septic patients are often not adequately enhanced. This septic cardiomyopathy involves both the right and the left ventricle and is potentially reversible. In response to volume substitution, the hearts can be considerably enlarged. The disease is not primarily hypoxic in nature, but may be aggravated by ischemia. Autonomic dysfunction, documented by a reduced heart rate variability and impaired baro- and chemoreflex sensitivities, forms part of the disease entity. The severity of myocardial depression correlates with a poor prognosis. Non-infectious systemic inflammatory response syndrome (SIRS) can give rise to an analogous disease entity, namely SIRS cardiomyopathy.

The etiology of the disease is multifactorial. Several candidates with potential pathogenetic impact on the heart were identified: bacterial toxins, cytokines and mediators including tumor necrosis factor α, interleukin-1 and nitric oxide, cardiodepressant factors, oxygen reactive species, catecholamines. Symptomatic treatment consists of volume substitution and of catecholamine support; causal therapeutic approaches aiming at an interruption of the proinflammatory mediator cascades are being tested.

Zusammenfassung

Das Auftreten einer Myokarddepression in der Sepsis ist erst in den achtziger Jahren von der Gruppe um Parrillo gezeigt worden, indem sie die Herzfunktion von Intensivpatienten mit szintigraphischen Methoden untersucht haben. Die Einschränkung der Herzfunktion in der Sepsis wird häufig durch ein scheinbar normales Herzzeitvolumen maskiert. Berücksichtigt man jedoch die massive Nachlastsenkung infolge des stark verminderten systemischen Gefäßwiderstandes,—welche zu einer kompensatorischen Zunahme des Herzzeitvolumens führen sollte—so wird die häufig inadäquate Steigerung der Herzleistung rasch evident. Diese septische Kardiomyopathie involviert sowohl den linken als auch den rechten Ventrikel, und sie ist potenziell reversibel. Nach Volumengabe kann es zu einer ausgeprägten Herzdilatation kommen. Die septische Kardiomyopathie ist nicht primär hypoxischer Genese, sie kann aber durch eine gleichzeitig bestehende Myokardischämie verschlimmert werden. Eine das Herz betreffende autonome Dysfunktion – dokumentiert durch eine eingeschränkte Herzfrequenzvariabilität und eine gestörte Baro- und Chemoreflexsensitivität – ist Bestandteil der septischen Kardiomyopathie. Das Ausmaß der Herzfunktionseinschränkung korreliert mit einer ungünstigen Prognose. Nichtinfektiöse systemische Entzündungsreaktionen (SIRS) können eine der septischen Kardiomyopathie ähnliche „SIRS-Kardiomyopathie“ hervorrufen.

Die Ätiologie der Herzschädigung ist multifaktoriell. Mehrere Kandidaten mit einem pathogenen Potenzial auf das Herz wurden identifiziert: Bakterientoxine, Zytokine und Mediatoren einschließlich des Tumornektrosefaktor alpha, Interleukin-1 und Stickoxid, kardiodepressive Faktoren, reaktive Sauerstoffverbindungen und Katecholamine. Die symptomatische Behandlung der septischen Kardiomyopathie—eingebettet in das Gesamtkonzept der Herz-Kreislauftherapie—besteht in der Volumengabe und in der Unterstützung mit Katecholaminen. Kausale Therapieansätze zur Modulation des proinflammatorischen Toxin-Mediator-Netzwerkes befinden sich in der Anfangsphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Romberg E (1921) Die septische akute Myokarditis. In: Romberg E (Hrsg) Lehrbuch der Krankheiten des Herzens und der Blutgefäße. Enke-Verlag, Stuttgart, S 494

  2. Müller-Hoecker J, Haerty W (1986) Pathomorphological aspects of the hearts in septic patients. In: Schlag G, Redl H (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Elsevier, Berlin Heidelberg New York Oxford, p 18–54

  3. Parrillo JE (1989) The cardiovascular pathophysiology of sepsis. Ann Rev Med 40:469–485

    PubMed  CAS  Google Scholar 

  4. Schuster H-P (1989) VI. Schlussfolgerungen. In: Werdan K, Schuster H-P, Schlag G, Spilker G, Neumann R (Hrsg) Sepsis: Toxinwirkung, Herzschädigung, Quantifizierung, supportive Therapie mit Immunglobulinen. Intensivmed 26(Suppl 1):152–153

    Google Scholar 

  5. Mueller-Werdan U, Reithmann C, Werdan K (eds) (1996) Cytokines and the heart—Molecular mechanisms of septic cardiomyopathy. Landes Company, Austin, USA/Springer, Heidelberg New York Berlin

  6. Müller-Werdan U, Werdan K (1999) Septic cardiomyopathy. Current Opinion in Critical Care 5:415–420

    Article  Google Scholar 

  7. Müller-Werdan U, Werdan K (2005) Septischer Kreislaufschock und septische Kardiomyopathie. In: Werdan K, Schuster H-P, Müller-Werdan U (Hrsg) Sepsis und MODS, 4. Auflage. Springer, Heidelberg, S 277–358

  8. Müller-Werdan U, Prondzinsky R, Witthaut R, Stache N, Heinroth K, Kuhn C, Schmidt H, Busch I, Werdan K (1997) Das Herz bei Sepsis und MODS. Wien Klin Wochenschr [Suppl I]:3–24

  9. Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee (1992) American College of Chest Physicians/Society of Critical Care Medicine Conference Definitions of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    Google Scholar 

  10. Levy M, Fink MP, Marshall JC et al (2003) For the International Sepsis Definitions Conference 2001 SCCM/ESICM/ACCP/ATS/SIS: International Sepsis Definition Conference. Intensive Care Med 29:530–538 and Crit Care Med 31:1250–1256

  11. Schuster H-P, Müller-Werdan U (2005) Definition und Diagnose von Sepsis und Multiorganversagen. In: Werdan K, Schuster H-P, Müller-Werden U (Hrsg) Sepsis und MODS, 4. Auflage. Springer, Heidelberg, S 3–22

  12. Alberti C, Brun-Buisson C, Chevret S, Antonelli M, Goodman SV, Martin C, Moreno R, Ochagavia Ar, Palazzo M, Werdan K, Le Gall JR, for the European Sepsis Study Group (2005) Systemic inflammatory response and progression to severe sepsis in critically ill infected patients. Am J Respir Crit Care Med 171:461–468

    Article  PubMed  Google Scholar 

  13. Reith S, Werdan K (2005) Sepsis. In: Madler C, Jauch K-W, Werdan K, Siegrist, Pajonk F-G (Hrsg) Das NAW-Buch—Akutmedizin der ersten 24 Stunden, 3. Auflage. Urban & Fischer Elsevier, München Jena S 671–689

  14. Prondzinsky R, Werdan K, Buerke M (2004) Kardiogener Schock: Pathomechanismen, klinischer Verlauf, therapeutische Ansätze und Perspektiven. Internist 45:284–295

    Article  PubMed  CAS  Google Scholar 

  15. Rauchhaus M, Müller-Werdan U (2001) Zytokine bei Herzerkrankungen. Internist 42:75–84

    Article  PubMed  CAS  Google Scholar 

  16. Müller-Werdan U, Schuster H-P (2005) Abriss der Pathophysiologie als Grundlage der Therapie. In: Werden K, Schuster H-P, Müller-Werden U (Hrsg) Sepsis und MODS, 4. Auflage. Springer, Heidelberg, S 23–61

  17. Briassoulis G, Narlioglou M, Zavras N, Hatzis T (2001) Myocardial injury in meningococcus-induced purpura fulminans in children. Intensive Care Med 27:1073–1082

    Article  PubMed  CAS  Google Scholar 

  18. Grandel U, Hopf M, Buerke M, Hattar K, Heep M, Fink L, Bohle RM, Morath S, Hartung T, Pulamsetti S, Schermuly RT, Seeger W, Grimminger F, Sibelius U (2005) Mechanism of cardiac depression caused by lipoteichoic acids from Staphylococcus aureus in isolated rat hearts. Circulation 112:691–698

    Article  PubMed  CAS  Google Scholar 

  19. Müller-Werdan U, Pfeifer A, Hübner G, Seliger C, Reithmann C, Rupp H, Werdan K (1997) Partial inhibition of protein synthesis by Pseudomonas exotoxin. A deranges catecholamine sensitivity of cultured rat heart myocytes. J Mol Cell Cardiol 29:799–811

    Article  PubMed  Google Scholar 

  20. Müller-Werdan U, Schumann H, Loppnow H et al (1998) Endotoxin and tumor necrosis factor α exert a similar proinflammatory effect in neonatal rat cardiomyocytes, but have different cardiodepressant profiles. J Mol Cell Cardiol 30:1027–1036

    Article  PubMed  Google Scholar 

  21. Singer M, De Santis V, Vitale D, Jeffcoate W (2004) Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 364:545–548

    Article  PubMed  Google Scholar 

  22. Brander L, Weinberger D, Henzen C (2003) Heart and brain: a case of focal myocytolysis in severe pneumococcal meningoencephalitis with review of the contemporary literature. Anaesth Intensive Care 31:202–207

    PubMed  CAS  Google Scholar 

  23. Brueckmann M et al (2005) Prognostic value of plasma N-terminal probrain natriuretic peptide in patients with severe sepsis. Circulation 112:527–534

    Article  PubMed  CAS  Google Scholar 

  24. Castillo JR, Zagler A, Carillo-Jimenez R, Hennekens CH (2004) Brain natriuretic peptide: a potential marker for mortality in septic shock. Int J Infect Dis 8:271–274

    Article  PubMed  CAS  Google Scholar 

  25. Charpentier J, Luyt C-E, Fulla Y, Vinsonneau C, Cariou A, Grabar S, Dhainaut J-F, Mira J-P, Chiche J-D (2004) Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med 32:660–66

    Article  PubMed  CAS  Google Scholar 

  26. Guest TM, Ramanathan AV, Tuteur PG, Schechtman KB, Ladenson JH, Jaffe AS (1995) Myocardial injury in critically ill patients—a frequently unrecognized complication. JAMA 273:1945–1949

    Article  PubMed  CAS  Google Scholar 

  27. Kuhn C, Mueller-Werdan U, Schmitt DV, Lange H, Pilz G, Kreuzer E, Mohr FW, Zerkowski H-R, Werdan K (2000) Improved outcome of APACHE II score-defined escalating systemic inflammatory response syndrome in patients post cardiac surgery in 1996 compared to 1988–1999: the ESSICS-study pilot project. Eur J Cardio-thoracic Surg 17:30–37

    Article  CAS  Google Scholar 

  28. Maeder M, Ammann P, Kiowski W, Rickli H (2005) B-type natriuretic peptide in patients with sepsis and preserved left ventricular ejection fraction. Eur J Heart Failure 7:1164–1167

    Article  CAS  Google Scholar 

  29. Spies C, Haude V, Fitzner R, Schröder K, Overbeck M, Runkel N, Schaffartzik W (1998) Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 113:1055–1063

    PubMed  CAS  Google Scholar 

  30. Flieger RR (2005) Pathophysiologie-orientiertes, Prognose-validiertes und praktikables Monitoring von Patienten mit schwerer Sepsis und septischem Schock—Stellenwert von Score-Systemen, Herz-Kreislaufparametern, Infektions- und Inflammationsmarkern und Markern der autonomen Dysfunktion sowie des Skelettmuskel-Sauerstoffpartialdrucks als Komponenten des erweiterten Monitoring im Vergleich. Dissertationsarbeit, Martin-Luther-Universität, Halle-Wittenberg

  31. Gödecke A, Decking UKM, Ding Z, Hirchenhain J, Bidmon H-J, Gödecke S, Schrader J (1998) Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res 82:186–194

    PubMed  Google Scholar 

  32. Kostic MM, Petronijevic MR, Jakovljevic VLJ (1996) Role of nitric oxide (NO) in the regulation of coronary circulation. Physiol Res 45:273–278

    PubMed  CAS  Google Scholar 

  33. Cunnion RE, Schaer GL, Parker MM et al (1986) The coronary circulation in human septic shock. Circulation 73:637–644

    PubMed  CAS  Google Scholar 

  34. Dhainaut JF, Hughebaert M-F, Monsallier JF et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541

    PubMed  CAS  Google Scholar 

  35. Pilz G, McGinn P, Boekstegers P, Kääb S, Weidenhöfer S, Werdan K (1994) Pseudomonas sepsis does not cause more severe cardiovascular dysfunction in patients than Non-Pseudomonas sepsis. Circ Shock 42:174–182

    PubMed  CAS  Google Scholar 

  36. Hallström S, Koidl B, Müller U, Werdan K, Schlag G (1991) A cardiodepressant factor isolated from blood blocks Ca2+-current in cardiomyocytes. Am J Physiol 260:H869–H876

    PubMed  Google Scholar 

  37. Hallström S, Bernhart E, Müller U, Fürst W, Vogl C, Koidl B, Werdan K, Schlag G (1994) A cardiodepressant factor (CDF) isolated from hemofiltrates of patients in septic and/or cardiogenic shock blocks calcium inward current in cardiomyocytes. Shock 2[Suppl]:15

    Google Scholar 

  38. Hoffmann JN, Werdan K, Hartl WH et al (1999) Hemofiltrate from patients with severe sepsis and depressed left ventricular contractility contains cardiotoxic compounds. Shock 12:174–180

    PubMed  CAS  Google Scholar 

  39. Taiberg L, Wong J, Kumar A (2005) Myocardial depression in sepsis and septic shock. Advances in Sepsis 4/3:82–94

    Google Scholar 

  40. Levy RJ, Piel DA, Acton PD, Zhu R, Ferrari VA, Karp JS, Deutschman CS (2005) Evidence of myocardial hibernation in the septic heart. Crit Care Med 33:2752–2756

    Article  PubMed  Google Scholar 

  41. Dhainaut J-F, Pinsky MR, Nouria S, Slomka F, Brunet F (1997) Right ventricular function in human sepsis—a thermodilution study. Chest 112:1043–1049

    PubMed  CAS  Google Scholar 

  42. Prondzinsky R, Stache N, Witthaut R, Winkler M, Fraunberger P, Walli AK, Seidel D, Werdan K (1997) Multiorgan-failure (MOF) with and without sepsis: differences in incidence and pattern of detected arrhythmias. Crit Care 1(Suppl 1):P30

    Article  Google Scholar 

  43. Schaefer S (2006) Arrhythmien und eingeschränkte Herzfrequenzvariabilität bei Patienten mit Score-quantifizierter Sepsis und Score-quantifiziertem MODS—eine prospektive Studie auf einer internistischen Intensivstation. Dissertationsarbeit, Medizinische Fakultät der Martin-Luther-Universität Halle-Wittenberg

  44. Varriale P, Ramaprasad S (1995) Septic cardiomyopathy as a cause of long QT syndrome. J Electrocardiology 28:327–329

    Article  CAS  Google Scholar 

  45. Müller-Werdan U, Werdan K (2000) Immune modulation by catecholamines—a potential mechanism of cytokine release in heart failure? Herz 25:271–273

    Article  PubMed  Google Scholar 

  46. Müller-Werdan U, Engelmann H, Werdan K (1998) Cardiodepression by tumor necrosis factor α. Eur Cytokine Netw 9:689–691

    PubMed  Google Scholar 

  47. Müller-Werdan U, Jacoby J, Loppnow H et al (1999) Noradrenaline stimulates cardiomyocytes to produce interleukin-6, indicative of a proinflammatory action, which is suppressed by carvedilol. Eur Heart J 20(Suppl):P1721

    Google Scholar 

  48. Schwertz H, Müller-Werdan U, Prondzinsky R, Werdan K, Buerke M (2004) Katecholamine im kardiogenen Schock: hilfreich, nutzlos oder gefährlich? Dtsch Med Wochenschr 129:1925–1930

    Article  PubMed  CAS  Google Scholar 

  49. Marshal JC (2000) Complexity, chaos, and incomprehensibility: parsing the biology of critical illness. Crit Care Med 28:2646–2648

    Article  Google Scholar 

  50. Schmidt H, Müller-Werden U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, Prondzinsky R, Loppnow H, Buerke M, Hoyer D, Werdan K (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002

    Article  PubMed  Google Scholar 

  51. Scrogin KE, Hatton DC, Chi Y, Luft FC (1998) Chronic nitric oxide inhibition with L-NAME: effects on autonomic control of the cardiovascular system. Am J Physiol 274:R367–R374

    PubMed  CAS  Google Scholar 

  52. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  PubMed  CAS  Google Scholar 

  53. Schmidt H, Flieger RR, Hennen R, Tymiec P, Winkler M, Hoyer D, Buerke M, Müller-Werdan U, Werdan K (2005) Reversible autonome Dysfunktion bei einer jungen Patientin mit septischem Multiorgandysfunktionssyndrom. Dtsch Med Wochenschr 130:648–651

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt HB, Müller-Werdan U, Saworski J, Werdan K (2000) Can LPS or TNF-α narrow the beating rate variability of contracting cardiomyocytes? Shock 13(Suppl):311

    Google Scholar 

  55. Schmidt H, Werdan K, Mueller-Werdan U (2001) Autonomic dysfunction in the ICU patient. Current Opinion in Critical Care 7:314–322

    Article  PubMed  CAS  Google Scholar 

  56. Wu AHB (2001) Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med 27:959–961

    Article  PubMed  CAS  Google Scholar 

  57. Witthaut R, Busch C, Fraunberger P, Walli A, Seidel D, Pilz G, Stuttmann R, Speichermann N, Verner L, Werdan K (2003) Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsis-associated left ventricular dysfunction. Intensive Care Med 29:1696–1702

    Article  PubMed  Google Scholar 

  58. McLean AS, Huang SJ (2006) Intensive care echocardiography. In: Vincent J-L (ed) 2006 yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg, S 131–141

  59. Cotter G, Moshkovitz Y, Kaluski E, Milo O, Nobikov Y, Schneeweiß A, Krakover R, Vered Z (2003) The role of cardiac power and systemic vascular resistance in the pathopyhsiology and diagnosis of patients with acute congestive heart failure. Eur J Heart Failure 5:443–451

    Article  Google Scholar 

  60. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent J-L, Levy MM; for the Surviving Sepsis Campaign Management Guidelines Committee (2004) Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873

    Article  PubMed  Google Scholar 

  61. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377. Editorial: Evans TW (2001) Hemodynamic and metabolic therapy in critically ill patients (345:1417–1418); Correspondence: 346(2002):1025–1026 & 1377

    Article  PubMed  CAS  Google Scholar 

  62. Levy MM, Macias WL, Vincent JL, Russell JA, Silva E (2005) Early changes in organ function predict eventual survival in severe sepsis. Crit Care Med 33/10:2194–2201

    Article  PubMed  Google Scholar 

  63. Suzuki T, Morisaki H, Serita R et al (2005) Infusion of the beta-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med 33:2294–2301

    Article  PubMed  CAS  Google Scholar 

  64. Buerke M, Werdan K (2006) Beta-Agonisten oder eher Beta-Blocker bei septischer Kardiomyopathie? Intensiv-News 10:24–25

    Google Scholar 

  65. Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22:640–650

    PubMed  CAS  Google Scholar 

  66. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  PubMed  CAS  Google Scholar 

  67. Brealey D, Karyampudi S, Jaques T, Novelli M, Stidwill R, Taylor V, Smolenski R, Singer M (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol 286:R491–R497

    CAS  Google Scholar 

  68. Pathan N, Sandford C, Harding SE, Levin M (2002) Characterization of a myocardial depressant factor in meningococcemia. Crit Care Med 30:2191–2198

    Article  PubMed  CAS  Google Scholar 

  69. Niederbichler AD, Hoesel LM, Westfall MV, Gao H, Ipaktchi KR, Sun L, Zetoune FS, Su GL, Arbabi S, Sarma JV, Wang SC, Hemmila MR, Ward PA (2006) An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J Exp Med 203/1:53–61

    Article  PubMed  CAS  Google Scholar 

  70. Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodelling in rats. Circulation 97:1382–1391

    PubMed  CAS  Google Scholar 

  71. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Franco F, Peshock R, Thompson M, Giroir B (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation 97:1375–1381

    PubMed  CAS  Google Scholar 

  72. Kubota T, McTiernan CF, Frye CS, Demetris AJ, Feldman AM (1997) Cardiac-specific overexpression of tumor necrosis factor-α causes lethal myocarditis in transgenic mice. J Card Fail 3:117–124

    Article  PubMed  CAS  Google Scholar 

  73. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α. Circ Res 81:627–635

    PubMed  CAS  Google Scholar 

  74. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor α and interleukin 1β are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949–958

    Article  PubMed  CAS  Google Scholar 

  75. Loppnow H, Werdan K, Reuter G, Flad H-D (1998) The interleukin-1 and interleukin-1 converting enzyme families in the cardiovascular system. Eur Cytokine Netw 9:675–680

    PubMed  CAS  Google Scholar 

  76. Müller-Werdan U, Schumann H, Fuchs R, Reithmann C, Loppnow H, Koch S, Zimny-Arndt U, Chang He, Darmer D, Jungblut P, Stadler J, Holtz J, Werdan K (1997 b) Tumor necrosis factor α (TNFα) is cardiodepressant in pathophysiologically relevant concentrations without inducing inducible nitric oxide-(NO)-synthase (iNOS) or triggering serious cytotoxicity. J Mol Cell Cardiol 29:2915–923

    Article  Google Scholar 

  77. Nakano M, Knowlton AA, Dibbs Z, Mann DL (1998) Tumor necrosis factor-α confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 97:1392–1400

    PubMed  CAS  Google Scholar 

  78. Argenziano M, Dean DA, Moazami N, Goldstein DJ, Rose EA, Spotnitz HM, Burkhoff D, Oz MC, Dickstein ML (1998) Inhaled nitric oxide is not a myocardial depressant in a porcine model of heart failure. J Thorac Cardiovasc Surg 115:700–708

    Article  PubMed  CAS  Google Scholar 

  79. Balligand J-L (1998) Molecular mechanisms of action of nitric oxide. In: Vincent J-L (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg New York Berlin, S 107–124

  80. Drexler H, Kastner S, Strobel A, Studer R, Brodde OE, Hasenfuss G (1998) Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart. J Am Coll Cardiol 32:955–963

    Article  PubMed  CAS  Google Scholar 

  81. Fukuchi M, Hussain SNA, Giaid A (1998) Heterogenous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure—their relation to lesion site and β-adrenergic receptor therapy. Circulation 98:132–139

    PubMed  CAS  Google Scholar 

  82. Groeneveld ABJ, Hartemink KJ, de Groot MCM, Visser J, Thijs LG (1999) Circulating endothelin and nitrate-nitrite relate to hemodynamic and metabolic variables in human septic shock. Shock 11:160–166

    PubMed  CAS  Google Scholar 

  83. Hayward CS, Kalnins WV, Rogers P, Feneley MP, MacDonald PS, Kelly RP (1997) Effect of inhaled nitric oxide on normal human left ventricular function. J Am Coll Cardiol 30:49–56

    Article  PubMed  CAS  Google Scholar 

  84. Kelly RA, Balligand J-L, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79:363–380

    PubMed  CAS  Google Scholar 

  85. Paulus WJ (1999) Myocardial inducible nitric oxide synthase and left ventricular performance in the human heart. In: Vincent J-L (ed) Year-book of Intensive Care and Emergency Medicine. Springer, Heidelberg New York Berlin, S 497–503

  86. Thoenes M, Förstermann U, Tracey WR, Bleese NM, Nüssler AK, Scholz H, Stein B (1996) Expression of inducible nitric oxide synthase in failing and non-failing human heart. J Mol Cell Cardiol 28:165–169

    Article  PubMed  CAS  Google Scholar 

  87. Vandecastelle G, Eschenhagen T, Scholz H, Stein B, Verde I, Fischmeister R (1999) Muscarinic and β-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nature Medicine 5:331–334

    Article  CAS  Google Scholar 

  88. Oral H, Dorn GW, Mann DL (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-α in the adult mammalian cardiac myocyte. J Biol Chem 272:4836–4842

    Article  PubMed  CAS  Google Scholar 

  89. Reithmann C, Werdan K (1994) Tumor necrosis factor α decreases inositol phosphate formation and phosphatidylinositol-bisphosphate (PIP2) synthesis in rat cardiomyocytes. Naunyn-Schmiedeberg’s Arch Pharmacol 349:175–182

    CAS  Google Scholar 

  90. Gellerich FN, Trumbeckaite S, Hertel K, Zierz S, Müller-Werdan U, Werdan K, Redl H, Schlag G (1999) Impaired energy metabolism in hearts of septic baboons: diminished activities of complex I and complex II of the mitochondrial respiratory chain. Shock 11:336–341

    PubMed  CAS  Google Scholar 

  91. Kelm M, Schäfer S, Dahmann R, Dolu B, Perings S, Decking UKM, Schrader J, Strauer B (1997) Nitric oxide induced contractile dysfunction is related to a reduction in myocardial energy generation. Cardiovascular Research 36:185–194

    Article  PubMed  CAS  Google Scholar 

  92. Xie Y-W, Kaminski PM, Wolin MS (1998) Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrie formation during posthypoxic reoxygenation. Circ Res 82:891–897

    PubMed  CAS  Google Scholar 

  93. Zell R, Geck P, Werdan K, Boekstegers P (1997 ) TNF-α and IL-1β inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem 177:61–67

    Article  PubMed  CAS  Google Scholar 

  94. Comstock KL, Krown KA, Page MT, Martin D, Ho P, Pedraza M, Castro EN, Nakajima N, Glembotsik CC, Quintana PJE, Sabbadini RA (1998) LPS-induced TNF-α release from and apoptosis in rat cardiomyocytes: obligatory role for CD14 in mediating the LPS response. J Mol Cell Cardiol 30:2761–2775

    Article  PubMed  CAS  Google Scholar 

  95. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJE, Sabbadini RA (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. J Clin Invest 98:2854-2865

    Article  PubMed  CAS  Google Scholar 

  96. Natoli G, Costanzo A, Guido F, Moretti F, Levrero M (1998) Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling. Biochem Pharmacol 56:915–920

    Article  PubMed  CAS  Google Scholar 

  97. Singal PK, Khaper N, Palace V, Kumar D (1998) The role of oxidative stress in the genesis of heart disease. Cardiovascular Research 40:426–432

    Article  PubMed  CAS  Google Scholar 

  98. Szabo C (1996) The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock 6:79–88

    Article  PubMed  CAS  Google Scholar 

  99. Wong SCY, Fukuchi M, Melnyk P, Rodger I, Giaid A (1998) Induction of cyclooxygenase-2 and activation of nuclear factor-κB in myocardium of patients with congestive heart failure. Circulation 98:100–103

    PubMed  CAS  Google Scholar 

  100. Obata T, Sato T, Yamanaka Y, Arita M (1998) NO and cGMP facilitate adenosine production in rat hearts via activation of ecto-5′-nucleotidase. Pflügers Arch—Eur J Physiol 436:984–990

    Article  CAS  Google Scholar 

  101. Bernardin G, Strosberg, Bernard A, Mattei M, Marullo S (1998) β-adrenergic receptor-dependent and -independent stimulation of adenylate cyclase is impaired during severe sepsis in humans. Intensive Care Med 24:1315–1322

    Article  PubMed  CAS  Google Scholar 

  102. Boillot A, Massol J, Maupoil V, Grelier R, Capellier G, Berthelot A, Barale F (1996) Alterations of myocardial and vascular adrenergic receptor-mediated responses in Escherichia coli-induced septic shock in the rat. Crit Care Med 24/8:1373–1380

    Article  PubMed  CAS  Google Scholar 

  103. De Backer D, Creteur J, Preiser JC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  104. Dhainaut J-F A, Vinsonneau C, Journois D (1999) Hemofiltration and left ventricular function in sepsis: Mechanisms and clinical implications. Crit Care Med 27:473–474

    Article  PubMed  CAS  Google Scholar 

  105. Hoffmann JN, Hartl WH, Deppisch R, Faist E, Jochum M, Inthorn D (1996) Effect of hemofiltration on hemodynamics and systemic concentrations of anaphylatoxins and cytokines in human sepsis. Intensive Care Med 22:1360–1367

    PubMed  CAS  Google Scholar 

  106. Avontuur JAM, Boomsma F, van den Meiracker AH, de Jong FH, Bruining HA (1999) Endothelin-1 and blood pressure after inhibition of nitric oxide synthesis in human septic shock. Circulation 99:271–275

    PubMed  CAS  Google Scholar 

  107. Harding SE, Davies CH, Money-Kyrle AM, Poole-Wilson PA (1998) An inhibitor of nitric oxide synthase does not increase contraction or β-adrenoceptor sensitivity of ventricular myocytes from failing human heart. Cardiovascular Research 40:523–529

    Article  PubMed  CAS  Google Scholar 

  108. Iwama H, Komatsu T (1998) Effect of an endotoxin-removing column containing immobilized polymyxin B fiber in a patient with septic shock from Gram-positive infection. Acta Anaesthesiol Scand 42:590–593

    Article  PubMed  CAS  Google Scholar 

  109. Reinhart K, Meier-Hellmann A, Beale R et al (2004) Open randomized phase II trial of an extra corporeal endotoxin adsorber in suspected Gram-negative sepsis. Crit Care Med 32:1662–1668

    Article  PubMed  CAS  Google Scholar 

  110. Wagner DR, McTiernan C, Sanders VJ, Feldman AM (1998) Adenosine inhibits lipopolysaccharide-induced secretion of tumor necrosis factor-α in the failing human heart. Circulation 97:521–524

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Müller-Werdan.

Additional information

Serie: Die Intensivtherapie bei Sepsis und Multiorganversagen Herausgegeben von L. Engelmann (Leipzig)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Werdan, U., Buerke, M., Christoph, A. et al. Septische Kardiomyopathie. Intensivmed 43, 486–497 (2006). https://doi.org/10.1007/s00390-006-0738-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-006-0738-6

Key words

Schlüsselwörter

Navigation