Skip to main content
Log in

Highly realistic simulation for robot-assisted hypothalamic hamartoma real-time MRI-guided laser interstitial thermal therapy (LITT)

  • Multimedia Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Real-time MRI-guided laser interstitial thermal therapy (LITT) is a challenging procedure due to its technical complexity, as well as the need for efficient multidisciplinary teamwork and transfer of an anesthetized patient between operating room (OR) and magnetic resonance (MR). A highly realistic simulation was developed to design the safest process before being applied to real patients. In this report, authors address the description of the methodology used for this simulation and its purposefulness.

Methods

The entire image planning, anesthetic, and surgical process were performed on a modified pediatric simulation mannequin with a brain made of medical grade silicone including a hypothalamic hamartoma. Preoperative CT and MR were acquired. Stereotactic insertion of the optical fiber was assisted by the Neuromate® stereotactic robot. Laser ablation was performed with the Medtronic Visualase® MRI-guided system in a 3T Phillips Ingenia® MR scanner. All the stages of the process, participants, and equipment were the same as planned for a real surgery.

Results

No critical errors were found in the process design that prevented the procedure from being performed with adequate safety. Specific proposals for team positioning and interaction in patient transfers and in MR room were validated. Some specific elements that could improve safety were identified.

Conclusion

Highly realistic simulation has been an extremely useful tool for safely planning LITT, because professionals were able to take actions in the workflow based not on ideas but on lived experiences. It contributed definitively to build a well-coordinated surgical team that worked safely and more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ball T, Sharma M, White AC, Neimat JS (2018) Anterior corpus callosotomy using laser interstitial thermal therapy for refractory epilepsy. Stereotact Funct Neurosurg 96(6):406–411. https://doi.org/10.1159/000495414

    Article  PubMed  Google Scholar 

  2. Bernardo A (2017) Virtual reality and simulation in neurosurgical training. World Neurosurg 106:1015–1029. https://doi.org/10.1016/j.wneu.2017.06.140

    Article  PubMed  Google Scholar 

  3. Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, Lampotang S, Lizdas DE, Lombard G, Lister JR (2013) Mixed-reality simulation for neurosurgical procedures. Neurosurgery 73(Suppl 1):138–145. https://doi.org/10.1227/NEU.0000000000000113

    Article  PubMed  Google Scholar 

  4. Buckley RT, Wang AC, Miller JW, Novotny EJ, Ojemann JG (2016) Stereotactic laser ablation for hypothalamic and deep intraventricular lesions. Neurosurg Focus 41(4):E10. https://doi.org/10.3171/2016.7.FOCUS16236

    Article  PubMed  Google Scholar 

  5. Burrows AM, Marsh WR, Worrell G, Woodrum DA, Pollock BE, Gorny KR, Felmlee JP, Watson RE, Kaufmann TJ, Goerss S, Van Gompel JJ (2016) Magnetic resonance imaging-guided laser interstitial thermal therapy for previously treated hypothalamic hamartomas. Neurosurg Focus 41(4):E8. https://doi.org/10.3171/2016.7.FOCUS16218

    Article  PubMed  Google Scholar 

  6. Candela S, Vanegas MI, Darling A, Ortigoza-Escobar JD, Alamar M, Muchart J, Climent A, Ferrer E, Rumià J, Pérez-Dueñas B (2018) Frameless robot-assisted pallidal deep brain stimulation surgery in pediatric patients with movement disorders: precision and short-term clinical results. J Neurosurg Pediatr 22:416–425. https://doi.org/10.3171/2018.5.PEDS1814

    Article  PubMed  Google Scholar 

  7. Candela-Cantó S, Aparicio J, López JM, Baños-Carrasco P, Ramírez-Camacho A, Climent A, Alamar M, Jou C, Rumià J, San Antonio-Arce V, Arzimanoglou A, Ferrer E (2018) Frameless robot-assisted stereoelectroencephalography for refractory epilepsy in paediatric patients: accuracy, usefulness and technical issues. Acta Neurochir 160(12):2489–2500. https://doi.org/10.1007/s00701-018-3720-8

    Article  PubMed  Google Scholar 

  8. Chan S, Conti F, Salisbury K, Blevins NH (2013) Virtual reality simulation in neurosurgery: technologies and evolution. Neurosurgery 72(Suppl 1):154–164. https://doi.org/10.1227/NEU.0b013e3182750d26

    Article  PubMed  Google Scholar 

  9. Cohen AR, Lohani S, Manjila S, Natsupakpong S, Brown N, Cavusoglu MC (2013) Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training. Childs Nerv Syst 29(8):1235–1244. https://doi.org/10.1007/s00381-013-2139-z

    Article  PubMed  Google Scholar 

  10. Curry DJ, Gowda A, McNichols RJ, Wilfong AA (2012) MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav 24:408–414. https://doi.org/10.1016/j.yebeh.2012.04.135

    Article  PubMed  Google Scholar 

  11. Curry DJ, Raskin J, Ali L, Wilfong AA (2018) MR-guided laser ablation for the treatment of hypothalamic hamartomas. Epilepsy Res 142:131–134. https://doi.org/10.1016/j.eplepsyres.2018.03.013

    Article  PubMed  Google Scholar 

  12. Delorme S, Laroche D, DiRaddo R, Del Maestro RF (2012) NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery (Suppl Operative):32–42. https://doi.org/10.1227/NEU.0b013e318249c744

    Article  Google Scholar 

  13. Denson JS, Abrahamson S (1969) A computer-controlled patient simulator. JAMA 208(3):504–508. https://doi.org/10.1001/jama.1969.03160030078009

    Article  CAS  PubMed  Google Scholar 

  14. Deutsch ES (2017) Bridging the gap between work-as-imagined and work-as-done. Pennsylvania Patient Safety Advisory 14(2):80–83 http://patientsafety.pa.gov/ADVISORIES/Pages/201706_80.aspx

    Google Scholar 

  15. Du VX, Gandhi SV, Rekate HL, Mehta AD (2017) Laser interstitial thermal therapy: a first line treatment for seizures due to hypothalamic hamartoma? Epilepsia 58(Suppl 2):77–84. https://doi.org/10.1111/epi.13751

    Article  PubMed  Google Scholar 

  16. Ferroli P, Tringali G, Acerbi F, Schiariti M, Broggi M, Aquino D, Broggi G (2013) Advanced 3-dimensional planning in neurosurgery. Neurosurgery 72(Suppl 1):54–62. https://doi.org/10.1227/NEU.0b013e3182748ee8

    Article  PubMed  Google Scholar 

  17. González J, Enseñat J, Candela-Cantó S, Rumià J, Caral LA, Oliver D, Ferrer E (2009) New stereoscopic virtual reality system application to cranial nerve microvascular decompression. Acta Neurochir 152(2):355–360. https://doi.org/10.1007/s00701-009-0569-x

    Article  Google Scholar 

  18. González-Martínez J, Vadera S, Mullin J, Enatsu R, Alexopoulos AV, Patwardhan R, Bingaman W, Najm I (2014) Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Operative Neurosurgery 10:167–173. https://doi.org/10.1227/NEU.0000000000000286

    Article  Google Scholar 

  19. Hale AT, Sen S, Haider AS, Perkins FF, Clarke DF, Lee MR, Tomycz LD (2019) Open resection versus laser interstitial thermal therapy for the treatment of pediatric insular epilepsy. Neurosurgery 85(4):E730–E736. https://doi.org/10.1093/neuros/nyz094

    Article  PubMed  Google Scholar 

  20. Hawasli AH, Bandt SK, Hogan RE, Werner N, Leuthardt EC (2014) Laser ablation as treatment strategy for medically refractory dominant insular epilepsy: therapeutic and functional considerations. Stereotact Funt Neurosurg 92:397–404. https://doi.org/10.1159/000366001

    Article  Google Scholar 

  21. Ho AL, Miller KJ, Cartmel S, Inoyama K, Fisher RS, Halpern CH (2016) Stereotactic laser ablation of the splenium for intractable epilepsy. Epilepsy Behav Case Rep 5:23–26. https://doi.org/10.1016/j.ebcr.2015.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoppe C, Helmstaedter C (2018) Laser interstitial thermotherapy (LiTT) in pediatric epilepsy surgery. Seizure. https://doi.org/10.1016/j.seizure.2018.12.010

    Article  Google Scholar 

  23. Huang Y, Yecies D, Bruckert L, Parker JJ, Ho AL, Kim LH, Fornoff L, Wintermark M, Porter B, Yeom KW, Halpern CH, Grant GA (2019) Stereotactic laser ablation for completion corpus callosotomy. J Neurosurg Pediatr 2:1–9. https://doi.org/10.3171/2019.5.PEDS19117

    Article  CAS  Google Scholar 

  24. Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, Skidmore C, Mintzer S, Sharan AD, Sperling MR (2016) Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia 57:325–334. https://doi.org/10.1111/epi.13284

    Article  PubMed  Google Scholar 

  25. Karsy M, Patel DM, Halvorson K, Mortimer V, Bollo RJ (2018) Anterior two-thirds corpus callosotomy via stereotactic laser ablation. Neurosurg Focus 44(VideoSuppl2):V2. https://doi.org/10.3171/2018.4.FocusVid.17721

    Article  PubMed  Google Scholar 

  26. Kockro RA, Serra L, Tseng-Tsai Y, Chan C, Yih-Yian S, Gim-Guan C, Lee E, Hoe LY, Hern N, Nowinski WL (2000) Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46(1):118–135. https://doi.org/10.1093/neurosurgery%2F46.1.118

    Article  CAS  PubMed  Google Scholar 

  27. Le S, Ho AL, Miller KJ, Henderson JM, Grant GA, Meador KJ, Halpern CH (2018) Laser interstitial thermal therapy (LITT): seizure outcomes for refractory mesial temporal lobe epilepsy. Epilepsy Behav 89:37–41. https://doi.org/10.1016/j.yebeh.2018.09.040

    Article  PubMed  Google Scholar 

  28. Lemole GM, Banerjee PP, Luciano CJ, Neckrysh S, Charbel FT (2007) Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feed-back. J Neurosurg 107:515–521. https://doi.org/10.1227/01.neu.0000279734.22931.21

    Article  PubMed  Google Scholar 

  29. Lewis EC, Weil AG, Duchowny M, Bhatia S, Ragheb J, Miller I (2015) MR-guided laser interstitial thermal therapy for pediatric drug-resistant lesional epilepsy. Epilepsia 56:1590–1598. https://doi.org/10.1111/epi.13106

    Article  PubMed  Google Scholar 

  30. MacDonell J, Patel N, Fischer G, Burdette EC, Quian J, Chumbalkar V, Ghoshal G, Heffter T, Williams E, Gounis M, King R, Thibodeau J, Bogdanov G, Brooks OW, Langan E, Hwang R, Pilitsis JG (2019) Robotic assisted MRI-guided interventional interstitial MR-guided focused ultrasound ablation in a swine model. Neurosurgery 84(5):1138–1148. https://doi.org/10.1093/neuros/nyy266

    Article  PubMed  Google Scholar 

  31. McCracken DJ, Willie JT, Fernald BA, Saindane AM, Drane DL, Barrow DL, Gross LE (2016) Magnetic resonance thermometry-guided stereotactic laser ablation of cavernous malformations in drug-resistant epilepsy: imaging and clinical results. Oper Neurosurg (Hagerston) 12(1):39–48. https://doi.org/10.1227/NEU.0000000000001033

    Article  Google Scholar 

  32. North RY, Raskin JS, Curry DJ (2017) MRI-guided laser interstitial thermal therapy for epilepsy. Neurosurg Clin N Am 28:545–557. https://doi.org/10.1016/j.nec.2017.06.001

    Article  PubMed  Google Scholar 

  33. Palma AE, Wicks RT, Popli G, Couture DE (2018) Corpus callosotomy via laser interstitial thermal therapy: a case series. J Neurosurg Pediatr 23(3):303–307. https://doi.org/10.3171/2018.10.PEDS18368

    Article  PubMed  Google Scholar 

  34. Perry MS, Donahue DJ, Malik SI, Keator CG, Hernandez A, Reddy RK, Perkins FF, Lee MR, Clarke D (2017) Magnetic resonance imaging-guided laser interstitial thermal therapy as treatment for intractable insular epilepsy in children. J Neurosurg Pediatr 20(6):575–582. https://doi.org/10.3171/2017.6.PEDS17158

    Article  PubMed  Google Scholar 

  35. Prince E, Hakimian S, Ko AL, Ojemann JG, Kim MS, Miller JW (2017) Laser interstitial thermal therapy for epilepsy. Curr Neurol Neurosci Rep 17(9):63–69. https://doi.org/10.1007/s11910-017-0772-8

    Article  PubMed  Google Scholar 

  36. Rehder R, Abd-El-Barr M, Hooten K, Weinstok P, Madsen JR, Cohen AR (2015) The role of simulation in neurosurgery. Childs Nerv Syst 32(1):43–54. https://doi.org/10.1007/s00381-015-2923-z

    Article  PubMed  Google Scholar 

  37. Roussin CJ, Weinstock P (2017) SimZones: an organizational innovation for simulation programs and centers. Acad Med 92(8):1114–1120. https://doi.org/10.1097/ACM.0000000000001746

    Article  PubMed  Google Scholar 

  38. Shukla ND, Ho AL, Pendharkar AV, Sussman ES, Halpern CH (2017) Laser interstitial thermal therapy for the treatment of epilepsy: evidence to date. Neuropsychiatr Dis Treat 13:2469–2475. https://doi.org/10.2147/NDT.S139544

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singh H, Kalani M, Acosta-Torres S, El Ahmadieh TY, Loya J, Ganju A (2013) History of simulation in medicine: from Resusci Annie to the Ann Myers medical center. Neurosurgery 73(Suppl 1):9–14. https://doi.org/10.1227/NEU.0000000000000093

    Article  PubMed  Google Scholar 

  40. Southwell DG, Birk HS, Larson PS, Starr PA, Sugrue LP, Auguste KI (2018) Laser ablative therapy of sessile hypothalamic hamartomas in children using interventional MRI: report of 5 cases. J Neurosurg Pediatr 21(5):460–465. https://doi.org/10.3171/2017.10.PEDS17292

    Article  PubMed  Google Scholar 

  41. Stalhandske E, DeRosier J, Patail B, Gosbee G (2003) How to make the most of failure mode and effect analysis. Biomed Instrum Technol 37(2):96–102. https://doi.org/10.2345/0899-8205(2003)37[96:htmtmo]2.0.co;2

    Article  PubMed  Google Scholar 

  42. Suri A, Patra DP, Meena RK (2016) Simulation in neurosurgery: past, present and future. Neurol India 64(3):387–395. https://doi.org/10.4103/0028-3886.181556

    Article  PubMed  Google Scholar 

  43. Tao JX, Wu S, Lacy M, Rose S, Issa NP, Yang CW, Dorociak KE, Bruzzone M, Kim J, Daif A, Choi J, Towle WL, Warnke PC (2018) Stereotactic EEG-guided laser interstitial thermal therapy for mesial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 89(5):542–548. https://doi.org/10.1136/jnnp-2017-316833

    Article  PubMed  Google Scholar 

  44. Tovar-Spinoza Z, Carter D, Ferrone D, Eksioglu Y, Huckins S (2013) The use of MRI-guided laser-induced thermal ablation for epilepsy. Childs Nerv Syst 29(11):2089–2094. https://doi.org/10.1007/s00381-013-2169-6

    Article  PubMed  Google Scholar 

  45. Waseem H, Vivas AC, Vale FL (2017) MRI-guided laser interstitial thermal therapy for treatment of medically refractory non-lesional mesial temporal lobe epilepsy: outcomes, complications, and current limitations: a review. J Clin Neurosci 38:1–7. https://doi.org/10.1016/j.jocn.2016.12.002

    Article  PubMed  Google Scholar 

  46. Wicks RT, Jermakowicz WJ, Jagid JR, Couture DE, Willie JT, Laxton AW, Gross RE (2016) Laser interstitial thermal therapy for mesial temporal lobe epilepsy. Neurosurgery 79(S1):S83–S91. https://doi.org/10.1227/NEU.0000000000001439

    Article  PubMed  Google Scholar 

  47. Wilfong AA, Curry DJ (2013) Hypothalamic hamartomas: optimal approach to clinical evaluation and diagnosis. Epilepsia 54(9):109–114. https://doi.org/10.1111/epi.12454

    Article  PubMed  Google Scholar 

  48. Willie JT, Laxpati NG, Drane DL, Gowda A, Appin C, Hao C, Brat DJ, Helmers SL, Saindane A, Nour SG, Gross RE (2014) Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery 74:569–584. https://doi.org/10.1227/NEU.0000000000000343

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu DS, Chen T, Hlubek RJ, Bristol RE, Smith KA, Ponce FA, Kerrigan JF, Nakaji P (2018) Magnetic resonance imaging-guided laser interstitial thermal therapy for the treatment of hypothalamic hamartomas: a retrospective review. Neurosurgery 83(6):1183–1192. https://doi.org/10.1093/neuros/nyx604

    Article  PubMed  Google Scholar 

  50. Youngerman BE, Oh JY, Anbarasan D, Billakota S, Casadei CH, Corrigan EK, Banks GP, Pack AM, Choi H, Bazil CW, Srinavasan S, Bateman LM, Schevon CA, Feldstein NA, Sheth SA, McKhann GM 2nd (2018) Laser ablation is effective for temporal lobe epilepsy with and without mesial temporal sclerosis if hippocampal seizure onsets are localized by stereoelectroencephalography. Epilepsia 59(3):595–606. https://doi.org/10.1111/epi.14004

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Carles Fàbrega and Gemma Fernández for figure and video editing.

We thank Lucía Bentabol and Georgios Protopapas for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Santiago Candela-Cantó, Carlos Aláez, Jordi Muchart, and Carmen de la Gala. The first draft of the manuscript was written by Santiago Candela-Cantó, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Santiago Candela-Cantó.

Ethics declarations

Conflict of interest

Authors declare that Medtronic has supported meetings for patients and professionals in Hospital Sant Joan de Déu Barcelona. The first author reports having received financial support from Medtronic for attending courses and congresses.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This report was presented as an oral presentation at the 47th annual meeting of the International Society for Pediatric Neurosurgery (ISPN) in October 2019 in Birmingham, UK.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candela-Cantó, S., Alamar, M., Aláez, C. et al. Highly realistic simulation for robot-assisted hypothalamic hamartoma real-time MRI-guided laser interstitial thermal therapy (LITT). Childs Nerv Syst 36, 1131–1142 (2020). https://doi.org/10.1007/s00381-020-04563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04563-0

Keywords

Navigation