Skip to main content
Log in

Prognostic value of leucine/phenylalanine ratio as an amino acid profile of heart failure

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Heart failure (HF) causes a hypercatabolic state that enhances the catabolic activity of branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in the heart and skeletal muscles and reduces protein synthesis in the liver. Consequently, free plasma aromatic amino acids (AAA, tyrosine and phenylalanine) are increased. To date, we have reported the prognostic value of the BCAA/AAA ratio (Fischer’s ratio) in patients with HF. However, the leucine/phenylalanine ratio, which is a simpler index than the Fischer’s ratio, has not been examined. Therefore, the prognostic value of the leucine/phenylalanine ratio in patients with HF was investigated. Overall 157 consecutive patients hospitalized for worsening HF (81 men, median age 78 years) were enrolled in the study. Plasma amino acid levels were measured when the patients were stabilized at discharge. Cardiac events were defined as a composite of cardiac death and hospitalization for worsening HF. A total of 46 cardiac events occurred during the median follow-up period of 238 (interquartile range 93–365) days. The median leucine/phenylalanine ratio was significantly lower in patients with cardiac events than in those without cardiac events (1.4 vs. 1.8, P < 0.001). The best cutoff value of the leucine/phenylalanine ratio was determined as 1.7 in the receiver operating characteristic (ROC) curve for cardiac events. Following a Kaplan–Meier survival analysis, the low group (leucine/phenylalanine ratio < 1.7, n = 72) had more cardiac events than the high group (leucine/phenylalanine ratio ≥ 1.7, n = 85) (log-rank, P < 0.001). Multivariate Cox proportional hazards regression analysis showed that the leucine/phenylalanine ratio was an independent predictor of cardiac events. Furthermore, on comparing the prognostic values for cardiac events based on ROC curves of leucine levels, BCAA levels, Fischer’s ratio, and leucine/phenylalanine ratio, the leucine/phenylalanine ratio was the most accurate in predicting future cardiac events (area under the curve 0.763,; sensitivity 0.783,; specificity 0.676,; P < 0.001). The leucine/phenylalanine ratio could be a useful predictor of future cardiac events in patients with HF, reflecting an imbalance in amino acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, Nodari S, Lam CS, Sato N, Shah AN, Gheorghiade M (2014) The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63:1123–1133

    Article  PubMed  Google Scholar 

  2. Peterson PN, Rumsfeld JS, Liang L, Albert NM, Hernandez AF, Peterson ED, Fonarow GC, Masoudi FA (2010) A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ Cardiovasc Qual Outcomes 3:25–32

    Article  PubMed  Google Scholar 

  3. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, Woodward M, Patel A, McMurray J, MacMahon S (2014) Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail 2:440–446

    Article  PubMed  Google Scholar 

  4. Hiraiwa H, Okumura T, Sawamura A, Sugiura Y, Kondo T, Watanabe N, Aoki S, Ichii T, Kitagawa K, Kano N, Fukaya K (2018) The Selvester QRS score as a predictor of cardiac events in nonischemic dilated cardiomyopathy. J Cardiol 71:284–290

    Article  PubMed  Google Scholar 

  5. Sugiura Y, Morimoto R, Aoki S, Yamaguchi S, Haga T, Kuwayama T, Yokoi T, Hiraiwa H, Kondo T, Watanabe N, Kano N (2019) Prognostic impact of mitral L-wave in patients with hypertrophic cardiomyopathy without risk factors for sudden cardiac death. Heart Vessels 34:2002–2010

    Article  PubMed  Google Scholar 

  6. Okumura T, Hirashiki A, Yamada S, Funahashi H, Ohshima S, Kono Y, Cheng XW, Takeshita K, Murohara T (2013) Association between cardiopulmonary exercise and dobutamine stress testing in ambulatory patients with idiopathic dilated cardiomyopathy: a comparison with peak VO2 and VE/VCO2 slope. Int J Cardiol 162:234–239

    Article  PubMed  Google Scholar 

  7. Tashiro H, Tanaka A, Ishii H, Motomura N, Arai K, Adachi T, Okajima T, Iwakawa N, Kojima H, Mitsuda T, Hirayama K (2020) Reduced exercise capacity and clinical outcomes following acute myocardial infarction. Heart Vessels 35:1044–1050

    Article  PubMed  Google Scholar 

  8. Mentz RJ, O’Connor CM (2016) Pathophysiology and clinical evaluation of acute heart failure. Nat Rev Cardiol 13:28–35

    Article  CAS  PubMed  Google Scholar 

  9. Pasini E, Aquilani R, Dioguardi FS (2004) Amino acids: chemistry and metabolism in normal and hypercatabolic states. Am J Cardiol 93:3A-5A

    Article  CAS  PubMed  Google Scholar 

  10. Ikegami R, Shimizu I, Yoshida Y, Minamino T (2017) Metabolomic analysis in heart failure. Circ J 82:10–16

    Article  PubMed  Google Scholar 

  11. Pitkanen HT, Nykanen T, Knuutinen J, Lahti KA, Keinanen O, Alen MA, Komi PV, Mero AA (2003) Free amino acid pool and muscle protein balance after resistance exercise. Med Sci Sports Exerc 35:784–792

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Zhou M, Sun H, Wang Y (2011) Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res 90:220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dejong CH, van de Poll MC, Soeters PB, Jalan R, Olde Damink SW (2007) Aromatic amino acid metabolism during liver failure. J Nutr 137(6 Suppl 1):1579S-85S (discussion 97S-98S)

  14. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WW, Mullens W (2013) Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 62:485–495

    Article  PubMed  Google Scholar 

  15. Samsky MD, Patel CB, DeWald TA, Smith AD, Felker GM, Rogers JG, Hernandez AF (2013) Cardiohepatic interactions in heart failure: an overview and clinical implications. J Am Coll Cardiol 61:2397–2405

    Article  PubMed  Google Scholar 

  16. Nikolaou M, Parissis J, Yilmaz MB, Seronde MF, Kivikko M, Laribi S, Paugam-Burtz C, Cai D, Pohjanjousi P, Laterre PF, Deye N (2013) Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. Eur Heart J 34:742–749

    Article  PubMed  Google Scholar 

  17. Pasini E, Aquilani R, Gheorghiade M, Dioguardi FS (2003) Malnutrition, muscle wasting and cachexia in chronic heart failure: the nutritional approach. Ital Heart J 4:232–235

    PubMed  Google Scholar 

  18. Würtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, Ghorbani A, Artati A, Wang Q, Tiainen M, Kangas AJ (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 131:774–785

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheng ML, Wang CH, Shiao MS, Liu MH, Huang YY, Huang CY, Mao CT, Lin JF, Ho HY, Yang NI (2015) Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J Am Coll Cardiol 65:1509–1520

    Article  CAS  PubMed  Google Scholar 

  20. Hunter WG, Kelly JP, McGarrah RW, Kraus WE, Shah SH (2016) Metabolic dysfunction in heart failure: diagnostic, prognostic, and pathophysiologic insights from metabolomic profiling. Curr Heart Fail Rep 13:119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang CH, Cheng ML, Liu MH (2018) Amino acid-based metabolic panel provides robust prognostic value additive to B-natriuretic peptide and traditional risk factors in heart failure. Dis Markers 2018:3784589

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang CH, Cheng ML, Liu MH (2018) Simplified plasma essential amino acid-based profiling provides metabolic information and prognostic value additive to traditional risk factors in heart failure. Amino Acids 50:1739–1748

    Article  CAS  PubMed  Google Scholar 

  23. Chen WS, Wang CH, Cheng CW, Liu MH, Chu CM, Wu HP, Huang PC, Lin YT, Ko T, Chen WH, Wang HJ (2020) Elevated plasma phenylalanine predicts mortality in critical patients with heart failure. ESC Heart Fail 7(5):2884–2893

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hiraiwa H, Okumura T, Kondo T, Kato T, Kazama S, Ishihara T, Iwata E, Shimojo M, Kondo S, Aoki S, Kanzaki Y (2020) Usefulness of the plasma branched-chain amino acid/aromatic amino acid ratio for predicting future cardiac events in patients with heart failure. J Cardiol 75:689–696

    Article  PubMed  Google Scholar 

  25. Kimura Y, Okumura T, Kazama S, Shibata N, Oishi H, Arao Y, Kuwayama T, Kato H, Yamaguchi S, Hiraiwa H, Kondo T (2020) Usefulness of plasma branched-chain amino acid analysis in predicting outcomes of patients with nonischemic dilated cardiomyopathy. Int Heart J 61:739–747

    Article  CAS  PubMed  Google Scholar 

  26. McKee PA, Castelli WP, McNamara PM, Kannel WB (1971) The natural history of congestive heart failure: the Framingham study. N Engl J Med 285:1441–1446

    Article  CAS  PubMed  Google Scholar 

  27. Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, Douglas PS, Faxon DP, Gillam LD, Kimball TR, Kussmaul WG (2003) ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography–summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J Am Coll Cardiol 42:954–970

    Article  PubMed  Google Scholar 

  28. Shiraishi Y, Kohsaka S, Abe T, Mizuno A, Goda A, Izumi Y, Yagawa M, Akita K, Sawano M, Inohara T, Takei M, Kohno T, Higuchi S, Yamazoe M, Mahara K, Fukuda K, Yoshikawa T, Investigators WTHFR (2006) Validation of the Get With The Guideline-Heart Failure risk score in Japanese patients and the potential improvement of its discrimination ability by the inclusion of B-type natriuretic peptide level. Am Heart J 171:33–39

    Article  Google Scholar 

  29. Suzuki S, Yoshihisa A, Sato Y, Kanno Y, Watanabe S, Abe S, Sato T, Oikawa M, Kobayashi A, Yamaki T, Kunii H (2018) Clinical significance of Get With the Guidelines-Heart Failure Risk Score in patients with chronic heart failure after hospitalization. J Am Heart Assoc 7:e008316

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:e240-327

    PubMed  Google Scholar 

  31. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  32. Ohsaka T, Inomata T, Naruke T, Shinagawa H, Koitabashi T, Nishii M, Takeuchi I, Takehana H, Izumi T (2008) Clinical impact of adherence to guidelines on the outcome of chronic heart failure in Japan. Int Heart J 49:59–73

    Article  CAS  PubMed  Google Scholar 

  33. Fonarow GC (2011) Improving quality of care and outcomes for heart failure. -Role of registries-. Circ J 75:1783–1790

    Article  PubMed  Google Scholar 

  34. Komajda M (2015) Current challenges in the management of heart failure. Circ J 79:948–953

    Article  CAS  PubMed  Google Scholar 

  35. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  Google Scholar 

  36. Tsuji S, Koyama S, Taniguchi R, Fujiwara T, Fujiwara H, Sato Y (2018) Nutritional status of outpatients with chronic stable heart failure based on serum amino acid concentration. J Cardiol 72:458–465

    Article  PubMed  Google Scholar 

  37. Hakuno D, Hamba Y, Toya T, Adachi T (2015) Plasma amino acid profiling identifies specific amino acid associations with cardiovascular function in patients with systolic heart failure. PLoS One 10:e0117325

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ingwall JS (2009) Energy metabolism in heart failure and remodelling. Cardiovasc Res 81:412–419

    Article  CAS  PubMed  Google Scholar 

  39. Ziolo MT, Maier LS, Piacentino V, Bossuyt J, Houser SR, Bers DM (2004) Myocyte nitric oxide synthase 2 contributes to blunted beta-adrenergic response in failing human hearts by decreasing Ca2+ transients. Circulation 109:1886–1891

    Article  CAS  PubMed  Google Scholar 

  40. Nishijima Y, Sridhar A, Bonilla I, Velayutham M, Khan M, Terentyeva R, Li C, Kuppusamy P, Elton TS, Terentyev D, Györke S (2011) Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology. Cardiovasc Res 91:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aquilani R, La Rovere MT, Febo O, Boschi F, Iadarola P, Corbellini D, Viglio S, Bongiorno AI, Pastoris O, Verri M (2012) Preserved muscle protein metabolism in obese patients with chronic heart failure. Int J Cardiol 160:102–108

    Article  PubMed  Google Scholar 

  42. Delles C, Rankin NJ, Boachie C, McConnachie A, Ford I, Kangas A, Soininen P, Trompet S, Mooijaart SP, Jukema JW, Zannad F (2018) Nuclear magnetic resonance-based metabolomics identifies phenylalanine as a novel predictor of incident heart failure hospitalisation: results from PROSPER and FINRISK 1997. Eur J Heart Fail 20:663–673

    Article  CAS  PubMed  Google Scholar 

  43. Kinugasa Y, Kato M, Sugihara S, Hirai M, Kotani K, Ishida K, Yanagihara K, Kato Y, Ogino K, Igawa O, Hisatome I (2009) A simple risk score to predict in-hospital death of elderly patients with acute decompensated heart failure–hypoalbuminemia as an additional prognostic factor. Circ J 73:2276–2281

    Article  CAS  PubMed  Google Scholar 

  44. Akashi M, Minami Y, Haruki S, Jujo K, Hagiwara N (2019) Prognostic implications of prealbumin level on admission in patients with acute heart failure referred to a cardiac intensive care unit. J Cardiol 73:114–119

    Article  PubMed  Google Scholar 

  45. Rame JE (2012) Chronic heart failure: a reversible metabolic syndrome? Circulation 125:2809–2811

    Article  PubMed  Google Scholar 

  46. Aquilani R, Viglio S, Iadarola P, Opasich C, Testa A, Dioguardi FS, Pasini E (2008) Oral amino acid supplements improve exercise capacities in elderly patients with chronic heart failure. Am J Cardiol 101:104E-110E

    Article  CAS  PubMed  Google Scholar 

  47. Aquilani R, Opasich C, Gualco A, Verri M, Testa A, Pasini E, Viglio S, Iadarola P, Pastoris O, Dossena M, Boschi F (2008) Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur J Heart Fail 10:1127–1135

    Article  CAS  PubMed  Google Scholar 

  48. Scognamiglio R, Testa A, Aquilani R, Dioguardi FS, Pasini E (2008) Impairment in walking capacity and myocardial function in the elderly: is there a role for nonpharmacologic therapy with nutritional amino acid supplements? Am J Cardiol 101:78E-81E

    Article  CAS  PubMed  Google Scholar 

  49. Lombardi C, Carubelli V, Lazzarini V, Vizzardi E, Quinzani F, Guidetti F, Rovetta R, Nodari S, Gheorghiade M, Metra M (2014) Effects of oral amino Acid supplements on functional capacity in patients with chronic heart failure. Clin Med Insights Cardiol 8:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carubelli V, Castrini AI, Lazzarini V, Gheorghiade M, Metra M, Lombardi C (2015) Amino acids and derivatives, a new treatment of chronic heart failure? Heart Fail Rev 20:39–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H.H., T.O., T. Kondo, and T. Kato conceived and designed this study. S. Kazama, T.I., E.I., M.S., S. Kondo, S.A., Yasunori Kanzaki, D.T., H.S., and Y.A. collected and analyzed data. H.H., T.O., T. Kondo, T. Kato, Yuki Kimura, S.Y., and T.M. interpreted the results. H.H., T.O., and T.M. drafted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Okumura.

Ethics declarations

Conflict of interest

T.O. received research grants from Ono Pharmaceutical Co., Ltd., Bayer Pharmaceutical Co., Ltd., Daiichi-Sankyo Pharma Inc., and Amgen Astellas BioPharma K.K. outside the submitted work. T.O. received honorariums from Ono Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd., and Medtronic Japan Co., Ltd. T.M. received lecture fees from Bayer Pharmaceutical Co., Ltd., Daiichi-Sankyo Co., Ltd., Dainippon Sumitomo Pharma Co., Ltd., Kowa Co., Ltd., MSD K. K., Mitsubishi Tanabe Pharma Co., Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K. K., Pfizer Japan Inc., Sanofi-Aventis K. K., and Takeda Pharmaceutical Co., Ltd. T.M. received an unrestricted research grant from the Department of Cardiology, Nagoya University Graduate School of Medicine from Astellas Pharma Inc., Daiichi-Sankyo Co., Ltd., Dainippon Sumitomo Pharma Co., Ltd., Kowa Co., Ltd., MSD K. K., Mitsubishi Tanabe Pharma Co., Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K. K., Otsuka Pharma Ltd., Pfizer Japan Inc., Sanofi-Aventis K. K., Takeda Pharmaceutical Co., Ltd., and Teijin Pharma Ltd. The remaining authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraiwa, H., Okumura, T., Kondo, T. et al. Prognostic value of leucine/phenylalanine ratio as an amino acid profile of heart failure. Heart Vessels 36, 965–977 (2021). https://doi.org/10.1007/s00380-020-01765-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-020-01765-z

Keywords

Navigation