Skip to main content
Log in

Cardiac rehabilitation program improves exercise capacity in heart transplantation recipients regardless of marginal donor factors

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Cardiac rehabilitation (CR) is recommended to improve exercise capacity after heart transplantation (HTx); however, the effects of marginal donor factors are unclear. Forty-one recipients participated in a 3-month CR program early after HTx (mean age 39 ± 14 years; 88% male). Patients were divided into marginal (≥ 2 marginal donor factors; n = 24) and control groups (< 2 marginal donor factors; n = 17). We examined donor and recipient factors related to change in peak oxygen uptake (peak VO2) during the CR program using multiple linear regression analysis. Baseline characteristics were similar between groups, although the mean age was higher in the marginal group (43 ± 13 vs. 34 ± 14 years, p = 0.043). Peak VO2 and knee extensor muscular strength (KEMS) improved significantly in both groups (p < 0.05), but there were no observed inter-group differences. Multiple analysis revealed change in KEMS (β = 0.52, 95% CI = 0.023–1.01) as an independent predictor of change in peak VO2 after adjustment for recipients’ age, sex, and CR attendance frequency (adjusted R2 = 0.25, p = 0.0084), whereas marginal donor factors were not a predictor (p = 0.76). The CR program improved exercise capacity in HTx recipients regardless of marginal donor factors, suggesting that recipients of marginal donor hearts should be referred to CR programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dunlay SM, Alison TG, Pereira NL (2014) Changes in cardiopulmonary exercise testing parameters following continuous flow left ventricular assist device implantation and heart transplantation. J Card Fail 20:548–554

    Article  Google Scholar 

  2. Grady KL, Meyer PM, Dressler D, White-Williams C, Kaan A, Mattea A, Ormaza S, Chillcott S, Loo A, Todd B, Costanzo MR, Piccione W (2003) Change in quality of life from after left ventricular assist device implantation to after heart transplantation. J Heart Lung Transplant 22:1254–1267

    Article  Google Scholar 

  3. Fukushima N, Ono M, Saito S, Saiki Y, Kubota S, Tanoue Y, Minami M, Konaka S, Ashikari J (2013) Japanese strategies to maximize heart and lung availabilities: experience from 100 consecutive brain-dead donors. Transplant Proc 45:2871–2874

    Article  CAS  Google Scholar 

  4. Fukushima N, Ono M, Saiki Y, Sawa Y, Nunoda S, Isobe M (2017) Registry Report on Heart Transplantation in Japan (June 2016). Circ J 81:298–303

    Article  Google Scholar 

  5. Fukushima N, Ono M, Nakatani T, Minami M, Konaka S, Ashikari J (2009) Strategies for maximizing heart and lung transplantation opportunities in Japan. Transplant Proc 41:273–276

    Article  CAS  Google Scholar 

  6. Tegtbur U, Busse MW, Jung K, Pethig K, Haverich A (2005) Time course of physical reconditioning during exercise rehabilitation late after heart transplantation. J Heart Lung Transplant 24:270–274

    Article  Google Scholar 

  7. Carter R, Al-Rawas OA, Stevenson A, Mcdonagh T, Stevenson RD (2006) Exercise responses following heart transplantation: 5 year follow-up. Scott Med J 51:6–14

    Article  CAS  Google Scholar 

  8. Kobashigawa JA, Leaf DA, Lee N, Gleeson MP, Liu H, Hamilton MA, Moriguchi JD, Kawata N, Einhorn K, Herlihy E, Laks H (1999) A controlled trial of exercise rehabilitation after heart transplantation. N Engl J Med 340:272–277

    Article  CAS  Google Scholar 

  9. Stevenson LW, Couper G (2007) On the fledgling field of mechanical circulatory support. J Am Coll Cardiol 50:748–751

    Article  Google Scholar 

  10. Laks H, Marelli D, Fonarow GC, Hamilton MA, Ardehali A, Moriguchi JD, Bresson J, Gjertson D, Kobashigawa JA, UCLA Heart Transplant Group (2003) Use of two recipient lists for adults requiring heart transplantation. J Thorac Cardiovasc Surg 125(49):59

    Google Scholar 

  11. Wittwer T, Wahlers T (2008) Marginal donor grafts in heart transplantation: lessons learned from 25 years of experience. Transpl Int 21:113–125

    Article  Google Scholar 

  12. Borg G (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    CAS  PubMed  Google Scholar 

  13. Itoh H, Koike A, Taniguchi K, Marumo F (1989) Severity and pathophysiology of heart failure on the basis of anaerobic threshold (AT) and related parameters. Jpn Circ J 53:146–154

    Article  CAS  Google Scholar 

  14. Bohannon RW (1997) Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil 78:26–32

    Article  CAS  Google Scholar 

  15. Fukuhara S, Bito S, Green J, Hsiao A, Kurokawa K (1998) Translation, adaptation, and validation of the SF-36 Health Survey for use in Japan. J Clin Epidemiol 51:1037–1044

    Article  CAS  Google Scholar 

  16. Fukuhara S, Ware JE, Kosinski M, Wada S, Gandek B (1998) Psychometric and clinical tests of validity of the Japanese SF-36 Health Survey. J Clin Epidemiol 51:1045–1053

    Article  CAS  Google Scholar 

  17. Roten L, Schmid JP, Merz F, Carrel T, Zwahlen M, Walpoth N, Mohacsi P, Hullin R (2009) Diastolic dysfunction of the cardiac allograft and maximal exercise capacity. J Heart Lung Transplant 28:434–439

    Article  CAS  Google Scholar 

  18. Oliveira Carvalho V, Guimaraes GV, Vieira ML, Catai AM, Oliveira-Carvalho V, Ayub-Ferreira SM, Bocchi EA (2015) Determinants of peak VO2 in heart transplant recipients. Braz J Cardiovasc Surg 30:9–15

    Google Scholar 

  19. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M (2001) Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 345:731–738

    Article  CAS  Google Scholar 

  20. Douard H, Parrens E, Billes MA, Labbe L, Baudet E, Broustet JP (1997) Predictive factors of maximal aerobic capacity after cardiac transplantation. Eur Heart J 18:1823–1828

    Article  CAS  Google Scholar 

  21. Nytrøen K, Rustad LA, Gude E, Hallen J, Fiane AE, Rolid K, Holm I, Aakhus S, Gullestad L (2014) Muscular exercise capacity and body fat predict VO2peak in heart transplant recipients. Eur J Prev Cardiol 21:21–29

    Article  Google Scholar 

  22. Suzuki Y, Ito K, Yamamoto K, Fukui N, Yanagi H, Kitagaki K, Konishi H, Arakawa T, Nakanishi M, Goto Y (2018) Predictors of improvements in exercise capacity during cardiac rehabilitation in the recovery phase after coronary artery bypass graft surgery versus acute myocardial infarction. Heart Vessels 33:358–366

    Article  Google Scholar 

  23. Yanagi H, Nakanishi M, Konishi H, Saori Y, Fukui N, Kitagaki K, Fujii S, Kohzuki M (2019) Effect of exercise training in heart failure patients without echocardiographic response to cardiac resynchronization therapy. Circ Rep 1:55–60

    Article  Google Scholar 

  24. Haykowsky M, Taylor D, Kim D, Tymchak W (2009) Exercise training improves aerobic capacity and skeletal muscle function in heart transplant recipients. Am J Transplant 9:734–739

    Article  CAS  Google Scholar 

  25. Bernardi L, Radaelli A, Passino C, Falcone C, Auguadro C, Martinelli L, Rinaldi M, Vigano M, Finardi G (2007) Effects of physical training on cardiovascular control after heart transplantation. Int J Cardiol 118:356–362

    Article  Google Scholar 

  26. Florea VG, Henein MY, Anker SD, Francis DP, Chamber JS, Ponikowski P, Coats AJ (2000) Prognostic value of changes over time in exercise capacity and echocardiographic measurements in patients with chronic heart failure. Eur Heart J 21:146–153

    Article  CAS  Google Scholar 

  27. Swank AM, Horton J, Fleg JL, Fonarow GC, Keteyian S, Goldberg L, Wolfel G, Handberg EM, Bensimhon D, Illiou MC, Vest M, Ewald G, Blackburn G, Leifer E, Cooper L, Kraus WE, HF-ACTION investigators, (2012) Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail 5:579–585

    Article  Google Scholar 

Download references

Acknowledgements

We thank the members of medical staff who assisted with the data collection. We would like to thank Editage (www.editage.jp) for English language editing. The authors have no funding information directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Contributions

Kazufumi Kitagaki made substantial contributions to conceptualization, methodology, statistics, data collection and writing the original draft. Rei Ono made substantial contributions to conceptualization, writing review and editing. Yukihiro Shimada, Hidetoshi Yanagi and Harumi Konishi made data substantial contributions to data collection. Michio Nakanishi made substantial contributions to critical revision. All authors approved the final article.

Corresponding author

Correspondence to Michio Nakanishi.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest to disclose concerning the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitagaki, K., Ono, R., Shimada, Y. et al. Cardiac rehabilitation program improves exercise capacity in heart transplantation recipients regardless of marginal donor factors. Heart Vessels 36, 659–666 (2021). https://doi.org/10.1007/s00380-020-01735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-020-01735-5

Keywords

Navigation