Skip to main content
Log in

Clinical significance of transluminal attenuation gradient in 320-row area detector coronary CT angiography

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The clinical significance of the transluminal attenuation gradient (TAG) has not been established. We evaluated the incremental diagnostic value of TAG by 320-row area detector computed tomography (320-ADCT). Subjects were 65 patients who underwent one-rotation scanning by 320-ADCT and invasive coronary angiography (ICA) within 3 months. TAG values were obtained for the major epicardial vessels 2 mm or more each in RCA, LAD and LCX using automatic analysis software. Moreover, TAG values that excluded calcified lesions in calculation of the regression line were also evaluated (excluded-TAG). In LAD, 21 intermediate lesions underwent functional flow reserve (FFR), and the incremental diagnostic value for functional stenosis was evaluated. The TAG values in the normal vessels were − 8.3 ± 5.0 (HU/cm) for the RCA (n = 32), − 23.3 ± 4.3 for the LAD (n = 9) and − 20.6 ± 10.0 for the LCX (n = 32). The RCA value was significantly higher (p < 0.001). The TAG values with stenosis degrees of ≤ 25%, 26–75%, ≥ 76% on ICA were − 8.3 ± 5.0 (n = 32) vs − 10.3 ± 7.2 (n = 25) vs − 10.0 ± 5.4 (n = 4) in the RCA, − 23.3 ± 4.3 (n = 9) vs − 21.0 ± 11.5 (n = 35) vs − 23.5 ± 15.3 (n = 10) in the LAD and − 21.1 ± 15.1 (n = 32) vs − 21.1 ± 15.1 (n = 16) vs − 17.7 ± 15.7 (n = 6) in the LCX, with no significant difference among the three groups. The excluded-TAG values also showed no significant difference. The area under the curve in the diagnosis of FFR < 0.8 in 21 LAD cases was 0.542 for CT only, 0.694 for CT + TAG, and 0.694 for CT + excluded-TAG. In single time-phase scanning by 320-ADCT, TAG does not offer an incremental diagnostic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steigner ML, Mitsouras D, Whitmore AG, Otero HJ, Wang C, Buckley O, Levit NA, Hussain AZ, Cai T, Mather RT, Smedby O, DiCarli MF, Rybicki FJ (2010) Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circ Cardiovasc Imaging 3:179–186

    Article  PubMed  Google Scholar 

  2. Choi JH, Koo BK, Yoon YE, Min JK, Song YB, Hahn JY, Choi SH, Gwon HC, Choe YH (2012) Diagnostic performance of intracoronary gradient-based methods by coronary computed tomography angiography for the evaluation of physiologically significant coronary artery stenoses: a validation study with fractional flow reserve. Eur Heart J Cardiovasc Imaging 13:1001–1007

    Article  PubMed  Google Scholar 

  3. Choi JH, Min JK, Labounty TM, Lin FY, Mendoza DD, Shin DH, Ariaratnam NS, Koduru S, Granada JF, Gerber TC, Oh JK, Gwon HC, Choe YH (2011) Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging 4:1149–1157

    Article  PubMed  Google Scholar 

  4. Stuijfzand WJ, Danad I, Raijmakers PG, Marcu CB, Heymans MW, van Kuijk CC, van Rossum AC, Nieman K, Min JK, Leipsic J, van Royen N, Knaapen P (2014) Additional value of transluminal attenuation gradient in CT angiography to predict hemodynamic significance of coronary artery stenosis. JACC Cardiovasc Imaging 7:374–386

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wong DT, Ko BS, Cameron JD, Nerlekar N, Leung MC, Malaiapan Y, Crossett M, Leong DP, Worthley SG, Troupis J, Meredith IT, Seneviratne SK (2013) Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol 61:1271–1279

    Article  PubMed  Google Scholar 

  6. Wong DTL, Ko BS, Cameron JD, Leong DP, Leung MCH, Malaiapan Y, Nerlekar N, Crossett M, Troupis J, Meredith IT, Seneviratne SK (2014) Comparison of diagnostic accuracy of combined assessment using adenosine stress computed tomography perfusion + computed tomography angiography with transluminal attenuation gradient + computed tomography angiography against invasive fractional flow reserve. J Am Coll Cardiol 63:1904–1912

    Article  PubMed  Google Scholar 

  7. Chatzizisis YS, George E, Cai T, Fulwadhva UP, Kumamaru KK, Schultz K, Fujisawa Y, Rassi C, Steigner M, Mather RT, Blankstein R, Rybicki FJ, Mitsouras D (2014) Accuracy and reproducibility of automated, standardized coronary transluminal attenuation gradient measurements. Int J Cardiovasc Imaging 30:1181–1189

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sakamoto S, Takahashi S, Coskun AU, Papafaklis MI, Takahashi A, Saito S, Stone PH, Feldman CL (2013) Relation of distribution of coronary blood flow volume to coronary artery dominance. Am J Cardiol 111:1420–1424

    Article  PubMed  Google Scholar 

  9. Chow BJ, Kass M, Gagne O, Chen L, Yam Y, Dick A, Wells GA (2011) Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow? J Am Coll Cardiol 57:1280–1288

    Article  PubMed  Google Scholar 

  10. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    Article  CAS  PubMed  Google Scholar 

  11. Wieneke H, von Birgelen C, Haude M, Eggebrecht H, Mohlenkamp S, Schmermund A, Bose D, Altmann C, Bartel T, Erbel R (2005) Determinants of coronary blood flow in humans: quantification by intracoronary Doppler and ultrasound. J Appl Physiol (1985) 98:1076–1082

    Article  Google Scholar 

  12. Bamberg F, Becker A, Schwarz F, Marcus RP, Greif M, von Ziegler F, Blankstein R, Hoffmann U, Sommer WH, Hoffmann VS, Johnson TR, Becker HC, Wintersperger BJ, Reiser MF, Nikolaou K (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260:689–698

    Article  PubMed  Google Scholar 

  13. Becker A, Becker C (2013) CT imaging of myocardial perfusion: possibilities and perspectives. J Nucl Cardiol 20:289–296

    Article  PubMed  Google Scholar 

  14. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58:1989–1997

    Article  PubMed  Google Scholar 

  15. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S, Group NXTTS (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63:1145–1155

    Article  PubMed  Google Scholar 

  17. Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, Dijkshoorn ML, Gijsen FJ, Ouhlous M, van Geuns RJ, Nieman K (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274:674–683

    Article  PubMed  Google Scholar 

  18. Ko BS, Cameron JD, Munnur RK, Wong DTL, Fujisawa Y, Sakaguchi T, Hirohata K, Hislop-Jambrich J, Fujimoto S, Takamura K, Crossett M, Leung M, Kuganesan A, Malaiapan Y, Nasis A, Troupis J, Meredith IT, Seneviratne SK (2017) Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging 10:663–673

    Article  PubMed  Google Scholar 

  19. Yoon YE, Choi JH, Kim JH, Park KW, Doh JH, Kim YJ, Koo BK, Min JK, Erglis A, Gwon HC, Choe YH, Choi DJ, Kim HS, Oh BH, Park YB (2012) Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve. JACC Cardiovasc Imaging 5:1088–1096

    Article  PubMed  Google Scholar 

  20. Ko BS, Wong DT, Norgaard BL, Leong DP, Cameron JD, Gaur S, Marwan M, Achenbach S, Kuribayashi S, Kimura T, Meredith IT, Seneviratne SK (2016) Diagnostic performance of transluminal attenuation gradient and noninvasive fractional flow reserve derived from 320-detector row CT angiography to diagnose hemodynamically significant coronary stenosis: an NXT substudy. Radiology 279:75–83

    Article  PubMed  Google Scholar 

  21. Park EA, Lee W, Park SJ, Kim YK, Hwang HY (2016) Influence of coronary artery diameter on intracoronary transluminal attenuation gradient during CT angiography. JACC Cardiovasc Imaging 9:1074–1083

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Fujimoto.

Ethics declarations

Conflict of interest

Dr. Daida has received speakers’ Bureau/Honoraria from Astellas Pharma Inc., AstraZeneca K. K., MSD. K. K., Kyowa Hakko Kirin Company, Ltd., Kowa Pharmaceutical Company, Ltd., Daiichi-Sankyo Company, Ltd., Takeda Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Corp., Bayer Yakuhin, Ltd., as well as research funds from Kyowa Hakko Kirin Company Ltd., Philips Electronics Japan, Ltd. Astellas Pharma Inc., ABBOTT JAPAN CO., Ltd., Sanofi K. K., Eisai Co., Ltd., Shionogi & Co., Ltd., Daiichi-Sankyo Company, Ltd., Dainippon Sumitomo Pharma Co., Ltd., Takeda Pharmaceutical Co., Ltd., Nippon Boehringer Ingelheim Co., Ltd., Bayer Yakuhin, Ltd., Pfizer Co., Ltd., Philips Electronics Japan, Ltd., FUJIFILM Corporation, Bristol-Myers Squibb Company, Boston Scientific Japan K. K., SANWA KAGAKU KENKYUSHO Co., Ltd., MSD. K. K. and Toshiba Medical Systems that are unrelated to this project. All other authors have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, E., Fujimoto, S., Takamura, K. et al. Clinical significance of transluminal attenuation gradient in 320-row area detector coronary CT angiography. Heart Vessels 33, 462–469 (2018). https://doi.org/10.1007/s00380-017-1081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-017-1081-5

Keywords

Navigation