Skip to main content

Advertisement

Log in

Association between suPAR and cardiac diastolic dysfunction among patients with preserved ejection fraction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Serum levels of the soluble urokinase-type plasminogen activator receptor (suPAR) reflect immune and inflammatory activation, and are shown to be associated with cardiovascular outcomes. We herein investigated the potential association between suPAR and left ventricular diastolic dysfunction among patients with preserved left ventricular ejection fraction (LVEF) and sinus rhythm. Among 291 patients who had sinus rhythm and an LVEF of ≥50% enrolled in the study, 26 (8.9%) were considered to have diastolic dysfunction. Patients with diastolic dysfunction had lower estimated glomerular filtration rate (eGFR), and higher systolic blood pressure (BPs), BNP, C-reactive protein, and suPAR than those without diastolic dysfunction. As compared with the first suPAR quartile, the fourth suPAR quartile was significantly associated with both diastolic dysfunction with an odds ratio of 8.95 [95% confidence interval (CI), 1.04–77.0, P < 0.05] after adjusting for sex, age, BPs log(eGFR), CRP, and diuretic use. On the other hand, receiver-operating characteristic curve (ROC) analysis showed that addition of log(suPAR) to the combination of age, sex, and log(eGFR), CRP, and diuretic use did not significantly improve the prediction of diastolic dysfunction. Among cardiac patients with preserved LVEF, serum suPAR was associated with diastolic dysfunction independent of confounding factors by logistic regression analysis. However, according to the ROC analysis, the utility of suPAR as a biomarker for diastolic dysfunction may be limited from a clinical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Del Rosso M, Margheri F, Serrati S, Chilla A, Laurenzana A, Fibbi G (2011) The urokinase receptor system, a key regulator at the intersection between inflammation, immunity, and coagulation. Curr Pharm Des 17:1924–1943

    Article  PubMed  Google Scholar 

  2. Su SC, Lin CW, Yang WE, Fan WL, Yang SF (2016) The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets 20:551–566

    Article  CAS  PubMed  Google Scholar 

  3. Sandquist M, Wong HR (2014) Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Expert Rev Clin Immunol 10:1349–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ni W, Han Y, Zhao J, Cui J, Wang K, Wang R, Liu Y (2016) Serum soluble urokinase-type plasminogen activator receptor as a biological marker of bacterial infection in adults: a systematic review and meta-analysis. Sci Rep 6:39481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeng M, Chang M, Zheng H, Li B, Chen Y, He W, Huang C (2016) Clinical value of soluble urokinase-type plasminogen activator receptor in the diagnosis, prognosis, and therapeutic guidance of sepsis. Am J Emerg Med 34:375–380

    Article  PubMed  Google Scholar 

  6. Lomholt AF, Christensen IJ, Hoyer-Hansen G, Nielsen HJ (2010) Prognostic value of intact and cleaved forms of the urokinase plasminogen activator receptor in a retrospective study of 518 colorectal cancer patients. Acta Oncol 49:805–811

    Article  CAS  PubMed  Google Scholar 

  7. Zimmermann HW, Koch A, Seidler S, Trautwein C, Tacke F (2012) Circulating soluble urokinase plasminogen activator is elevated in patients with chronic liver disease, discriminates stage and aetiology of cirrhosis and predicts prognosis. Liver Int 32:500–509

    CAS  PubMed  Google Scholar 

  8. Persson M, Engstrom G, Bjorkbacka H, Hedblad B (2012) Soluble urokinase plasminogen activator receptor in plasma is associated with incidence of CVD. Results from the malmo diet and cancer study. Atherosclerosis 220:502–505

    Article  CAS  PubMed  Google Scholar 

  9. Eapen DJ, Manocha P, Ghasemzadeh N, Patel RS, Al Kassem H, Hammadah M, Veledar E, Le NA, Pielak T, Thorball CW, Velegraki A, Kremastinos DT, Lerakis S, Sperling L, Quyyumi AA (2014) Soluble urokinase plasminogen activator receptor level is an independent predictor of the presence and severity of coronary artery disease and of future adverse events. J Am Heart Assoc 3:e001118

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sorensen MH, Gerke O, Eugen-Olsen J, Munkholm H, Lambrechtsen J, Sand NP, Mickley H, Rasmussen LM, Olsen MH, Diederichsen A (2014) Soluble urokinase plasminogen activator receptor is in contrast to high-sensitive C-reactive-protein associated with coronary artery calcifications in healthy middle-aged subjects. Atherosclerosis 237:60–66

    Article  PubMed  Google Scholar 

  11. Lyngbaek S, Marott JL, Sehestedt T, Hansen TW, Olsen MH, Andersen O, Linneberg A, Haugaard SB, Eugen-Olsen J, Hansen PR, Jeppesen J (2013) Cardiovascular risk prediction in the general population with use of suPAR, CRP, and Framingham risk score. Int J Cardiol 167:2904–2911

    Article  PubMed  Google Scholar 

  12. Borne Y, Persson M, Melander O, Smith JG, Engstrom G (2014) Increased plasma level of soluble urokinase plasminogen activator receptor is associated with incidence of heart failure but not atrial fibrillation. Eur J Heart Fail 16:377–383

    Article  CAS  PubMed  Google Scholar 

  13. Fujita SI, Tanaka S, Maeda D, Morita H, Fujisaka T, Takeda Y, Ito T, Ishizaka N (2017) Serum soluble urokinase-type plasminogen activator receptor is associated with low left ventricular ejection fraction and elevated plasma brain-type natriuretic peptide level. PLoS ONE 12:e0170546

    Article  PubMed  PubMed Central  Google Scholar 

  14. Matsubara J, Sugiyama S, Nozaki T, Sugamura K, Konishi M, Ohba K, Matsuzawa Y, Akiyama E, Yamamoto E, Sakamoto K, Nagayoshi Y, Kaikita K, Sumida H, Kim-Mitsuyama S, Ogawa H (2011) Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. J Am Coll Cardiol 57:861–869

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto E, Hirata Y, Tokitsu T, Kusaka H, Tabata N, Tsujita K, Yamamuro M, Kaikita K, Watanabe H, Hokimoto S, Maruyama T, Ogawa H (2016) The clinical significance of plasma neopterin in heart failure with preserved left ventricular ejection fraction. ESC Heart Fail 3:53–59

    Article  PubMed  Google Scholar 

  16. Theilade S, Rossing P, Eugen-Olsen J, Jensen JS, Jensen MT (2016) suPAR level is associated with myocardial impairment assessed with advanced echocardiography in patients with type 1 diabetes with normal ejection fraction and without known heart disease or end-stage renal disease. Eur J Endocrinol 174:745–753

    Article  CAS  PubMed  Google Scholar 

  17. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  CAS  PubMed  Google Scholar 

  18. Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55:613–618

    Article  CAS  PubMed  Google Scholar 

  19. Wachtell K, Bella JN, Liebson PR, Gerdts E, Dahlof B, Aalto T, Roman MJ, Papademetriou V, Ibsen H, Rokkedal J, Devereux RB (2000) Impact of different partition values on prevalences of left ventricular hypertrophy and concentric geometry in a large hypertensive population: the LIFE study. Hypertension 35:6–12

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka S, Fujita S, Kizawa S, Morita H, Ishizaka N (2016) Association between FGF23, alpha-Klotho, and cardiac abnormalities among patients with various chronic kidney disease stages. PLoS ONE 11:e0156860

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbely A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550

    Article  PubMed  Google Scholar 

  22. Devereux RB, James GD, Pickering TG (1993) What is normal blood pressure? Comparison of ambulatory pressure level and variability in patients with normal or abnormal left ventricular geometry. Am J Hypertens 6:211S–215S

    CAS  PubMed  Google Scholar 

  23. Mitter SS, Shah SJ, Thomas JD (2017) A test in context: E/A and E/e′ to assess diastolic dysfunction and LV filling pressure. J Am Coll Cardiol 69:1451–1464

    Article  PubMed  Google Scholar 

  24. Sato W, Kosaka T, Koyama T, Ishida M, Iino K, Watanabe H, Ito H (2013) Impaired renal function is a major determinant of left ventricular diastolic dysfunction: assessment by stress myocardial perfusion imaging. Ann Nucl Med 27:729–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Unger ED, Dubin RF, Deo R, Daruwalla V, Friedman JL, Medina C, Beussink L, Freed BH, Shah SJ (2016) Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 18:103–112

    Article  PubMed  Google Scholar 

  26. Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, van Heerebeek L, Hillege HL, Lam CS, Navis G, Voors AA (2016) Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 18:588–598

    Article  PubMed  Google Scholar 

  27. Gromadzinski L, Januszko-Giergielewicz B, Pruszczyk P (2014) Hypocalcemia is related to left ventricular diastolic dysfunction in patients with chronic kidney disease. J Cardiol 63:198–204

    Article  PubMed  Google Scholar 

  28. Nogi S, Fujita S, Okamoto Y, Kizawa S, Morita H, Ito T, Sakane K, Sohmiya K, Hoshiga M, Ishizaka N (2015) Serum uric acid is associated with cardiac diastolic dysfunction among women with preserved ejection fraction. Am J Physiol Heart Circ Physiol 309:H986–H994

    CAS  PubMed  Google Scholar 

  29. Okamoto Y, Fujita S, Morita H, Kizawa S, Ito T, Sakane K, Sohmiya K, Hoshiga M, Ishizaka N (2016) Association between circulating FGF23, alpha-Klotho, and left ventricular diastolic dysfunction among patients with preserved ejection fraction. Heart Vessels 31:66–73

    Article  PubMed  Google Scholar 

  30. Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, Altintas MM, Wei C, Hotton AL, French AL, Sperling LS, Lerakis S, Quyyumi AA, Reiser J (2015) Soluble urokinase receptor and chronic kidney disease. N Engl J Med 373:1916–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suleiman M, Khatib R, Agmon Y, Mahamid R, Boulos M, Kapeliovich M, Levy Y, Beyar R, Markiewicz W, Hammerman H, Aronson D (2006) Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. J Am Coll Cardiol 47:962–968

    Article  PubMed  Google Scholar 

  32. Dick SA, Epelman S (2016) Chronic heart failure and inflammation: what do we really know? Circ Res 119:159–176

    Article  CAS  PubMed  Google Scholar 

  33. Van Tassell BW, Arena R, Biondi-Zoccai G, McNair Canada J, Oddi C, Abouzaki NA, Jahangiri A, Falcao RA, Kontos MC, Shah KB, Voelkel NF, Dinarello CA, Abbate A (2014) Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol 113:321–327

    Article  PubMed  Google Scholar 

  34. Glezeva N, Voon V, Watson C, Horgan S, McDonald K, Ledwidge M, Baugh J (2015) Exaggerated inflammation and monocytosis associate with diastolic dysfunction in heart failure with preserved ejection fraction: evidence of M2 macrophage activation in disease pathogenesis. J Card Fail 21:167–177

    Article  CAS  PubMed  Google Scholar 

  35. Tang L, Han X (2013) The urokinase plasminogen activator system in breast cancer invasion and metastasis. Biomed Pharmacother 67:179–182

    Article  CAS  PubMed  Google Scholar 

  36. Backes Y, van der Sluijs KF, Mackie DP, Tacke F, Koch A, Tenhunen JJ, Schultz MJ (2012) Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: a systematic review. Intensive Care Med 38:1418–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hodges GW, Bang CN, Wachtell K, Eugen-Olsen J, Jeppesen JL (2015) suPAR: a new biomarker for cardiovascular disease? Can J Cardiol 31:1293–1302

    Article  PubMed  Google Scholar 

  38. Mekonnen G, Corban MT, Hung OY, Eshtehardi P, Eapen DJ, Al-Kassem H, Rasoul-Arzrumly E, Gogas BD, McDaniel MC, Pielak T, Thorball CW, Sperling L, Quyyumi AA, Samady H (2015) Plasma soluble urokinase-type plasminogen activator receptor level is independently associated with coronary microvascular function in patients with non-obstructive coronary artery disease. Atherosclerosis 239:55–60

    Article  CAS  PubMed  Google Scholar 

  39. Lyngbaek S, Sehestedt T, Marott JL, Hansen TW, Olsen MH, Andersen O, Linneberg A, Madsbad S, Haugaard SB, Eugen-Olsen J, Jeppesen J (2013) CRP and suPAR are differently related to anthropometry and subclinical organ damage. Int J Cardiol 167:781–785

    Article  PubMed  Google Scholar 

  40. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271

    Article  PubMed  Google Scholar 

  41. Namba T, Masaki N, Matsuo Y, Sato A, Kimura T, Horii S, Yasuda R, Yada H, Kawamura A, Takase B, Adachi T (2016) Arterial stiffness is significantly associated with left ventricular diastolic dysfunction in patients with cardiovascular disease. Int Heart J 57:729–735

    Article  PubMed  Google Scholar 

  42. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschope C, Leite-Moreira AF, Musters R, Niessen HW, Linke WA, Paulus WJ, Hamdani N (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail 4:312–324

    Article  PubMed  Google Scholar 

  43. du Plooy CS, Kruger R, Huisman HW, Rasmussen LM, Eugen-Olsen J, Schutte AE (2015) Extracellular matrix biomarker, fibulin-1 and its association with soluble uPAR in a bi-ethnic South African population: the SAfrEIC study. Heart Lung Circ 24:298–305

    Article  PubMed  Google Scholar 

  44. Osawa K, Miyoshi T, Oe H, Sato S, Nakamura K, Kohno K, Morita H, Kanazawa S, Ito H (2016) Association between coronary artery calcification and left ventricular diastolic dysfunction in elderly people. Heart Vessels 31:499–507

    Article  PubMed  Google Scholar 

  45. Suzuki S, Sagara K, Otsuka T, Matsuno S, Funada R, Uejima T, Oikawa Y, Koike A, Nagashima K, Kirigaya H, Yajima J, Sawada H, Aizawa T, Yamashita T (2012) Gender-specific relationship between serum uric acid level and atrial fibrillation prevalence. Circ J 76:607–611

    Article  CAS  PubMed  Google Scholar 

  46. Ndrepepa G, Cassese S, Braun S, Fusaro M, King L, Tada T, Schomig A, Kastrati A, Schmidt R (2013) A gender-specific analysis of association between hyperuricaemia and cardiovascular events in patients with coronary artery disease. Nutr Metab Cardiovasc Dis 23:1195–1201

    Article  CAS  PubMed  Google Scholar 

  47. Onoue Y, Izumiya Y, Hanatani S, Kimura Y, Araki S, Sakamoto K, Yamamoto E, Tsujita K, Tanaka T, Yamamuro M, Kojima S, Kaikita K, Hokimoto S, Ogawa H (2016) Fragmented QRS complex is a diagnostic tool in patients with left ventricular diastolic dysfunction. Heart Vessels 31:563–567

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (No. 15K09106). We are highly appreciative of Chieko Ohta, Yumiko Ohgami, and Megumi Hashimoto for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobukazu Ishizaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujisaka, T., Fujita, Si., Maeda, D. et al. Association between suPAR and cardiac diastolic dysfunction among patients with preserved ejection fraction. Heart Vessels 32, 1327–1336 (2017). https://doi.org/10.1007/s00380-017-1002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-017-1002-7

Keywords

Navigation