Skip to main content

Advertisement

Log in

Wave intensity analysis in mice: age-related changes in WIA peaks and correlation with cardiac indexes

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Mouse models are increasingly employed in the comprehension of cardiovascular disease. Wave Intensity Analysis (WIA) can provide information about the interaction between the vascular and the cardiac system. We investigate age-associated changes in WIA-derived parameters in mice and correlate them with biomarkers of cardiac function. Sixteen wild-type male mice were imaged with high-resolution ultrasound (US) at 8 weeks (T 0) and 25 weeks (T 1) of age. Carotid pulse wave velocity (PWV) was calculated from US images using the diameter–velocity loop and employed to evaluate WIA. Amplitudes of the first (W 1) and the second (W 2) local maxima, local minimum (W b) and the reflection index (RI = W b/W 1) were assessed. Cardiac output (CO), ejection fraction (EF), fractional shortening (FS) and stroke volume (SV) were evaluated; longitudinal, radial and circumferential strain and strain rate values (LS, LSR, RS, RSR, CS, CSR) were obtained through strain analysis. W 1 (T 0: 4.42e-07 ± 2.32e-07 m2/s; T 1: 2.21e-07 ± 9.77 m2/s), W 2 (T 0: 2.45e-08 ± 9.63e-09 m2/s; T 1: 1.78e-08 ± 7.82 m2/s), W b (T 0: −8.75e-08 ± 5.45e-08 m2/s; T 1: −4.28e-08 ± 2.22e-08 m2/s), CO (T 0: 19.27 ± 4.33 ml/min; T 1: 16.71 ± 2.88 ml/min), LS (T 0: 17.55 ± 3.67%; T 1: 15.05 ± 2.89%), LSR (T 0: 6.02 ± 1.39 s−1; T 1: 5.02 ± 1.25 s−1), CS (T 0: 27.5 ± 5.18%; T 1: 22.66 ± 3.09%) and CSR (T 0: 10.03 ± 2.55 s−1; T 1: 7.50 ± 1.84 s−1) significantly reduced with age. W 1 was significantly correlated with CO (R = 0.58), EF (R = 0.72), LS (R = 0.65), LSR (R = 0.89), CS (R = 0.61), CSR (R = 0.70) at T 0; correlations were lost at T 1. The decrease in W 1 and W 2 suggests a cardiac performance reduction, while that in Wb, considering unchanged RI, might indicate a wave energy decrease. The loss of correlation between WIA-derived and cardiac parameters might reflect an alteration in cardiovascular interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RelD:

Relative distension

PWV:

Pulse wave velocity

LVmass:

Left ventricular mass

CO:

Cardiac output

FS:

Fractional shortening

SV:

Stroke volume

EF:

Ejection fraction

gLS:

Global longitudinal strain

gLSR:

Global longitudinal strain rate

gRS:

Global radial strain

gRSR:

Global radial strain rate

gCS:

Global circumferential strain

gCSR:

Global circumferential strain rate

References

  1. Russell JC, Proctor SD (2006) Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol 15(6):318–330

    Article  CAS  PubMed  Google Scholar 

  2. Jones CJ, Goodfellow J, Bleasdale RA, Frenneaux MP (2000) Modulation of interaction between left ventricular ejection and the arterial compartment: assessment of aortic wave travel. Heart Vessels 15(6):247–255

    Article  CAS  PubMed  Google Scholar 

  3. MacRae JM, Sun YH, Isaac DL, Dobson GM, Cheng CP, Little WC, Parker KH, Tyberg JV (1997) Wave-intensity analysis: a new approach to left ventricular filling dynamics. Heart Vessels 12(2):53–59

    Article  CAS  PubMed  Google Scholar 

  4. Parker KH, Jones CJ, Dawson JR, Gibson DG (1988) What stops the flow of blood from the heart? Heart Vessels 4(4):241–245

    Article  CAS  PubMed  Google Scholar 

  5. Hughes AD, Parker KH, Davies JE (2008) Waves in arteries: a review of Wave Intensity analysis in the systemic and coronary circulations. Artery Res 2:51–59

    Article  Google Scholar 

  6. Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, Hayano J, Kimura G (2003) Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 18(3):107–111

    Article  PubMed  Google Scholar 

  7. Khir AW, Henein MY, Koh T, Das SK, Parker KH, Gibson DG (2001) Arterial waves in humans during peripheral vascular surgery. Clin Sci (Lond) 101(6):749–757

    Article  CAS  Google Scholar 

  8. Zambanini A, Cunningham SL, Parker KH, Khir AW, Thom SA, Hughes AD (2005) Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis. Am J Physiol Heart Circ Physiol 289(1):H270–H276

    Article  CAS  PubMed  Google Scholar 

  9. Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47(2):197–206

    Article  PubMed  Google Scholar 

  10. Curtis S, Zambanini A, Mayet J, Mc G, Thom SA, Foale R, Parker KH, Hughes AD (2007) Reduced systolic wave generation and increased peripheral wave reflection in chronic heart failure. Am J Physiol Heart Circ Physiol 293(1):H557–H562

    Article  CAS  PubMed  Google Scholar 

  11. Penny DJ, Mynard JP, Smolich JJ (2008) Aortic wave intensity analysis of ventricular-vascular interaction during incremental dobutamine infusion in adult sheep. Am J Physiol Heart Circ Physiol 294(1):H481–H489

    Article  CAS  PubMed  Google Scholar 

  12. Khir AW, Zambanini A, Parker KH (2004) Local and regional wave speed in the aorta: effects of arterial occlusion. Med Eng Phys 26(1):23–29

    Article  CAS  PubMed  Google Scholar 

  13. Feng J, Khir AW (2010) Determination of wave speed and wave separation in the arteries using diameter and velocity. J Biomech 43(3):455–462

    Article  CAS  PubMed  Google Scholar 

  14. Borlotti A, Khir AW, Rietzschel ER, De Buyzere ML, Vermeersch S, Segers P (2012) Noninvasive determination of local pulse wave velocity and wave intensity: changes with age and gender in the carotid and femoral arteries of healthy human. J Appl Physiol 113(5):727–735

    Article  PubMed  Google Scholar 

  15. Gao S, Ho D, Vatner ED, Vatner SF (2011) Echocardiography in Mice. Curr Protoc Mouse Biol 1:71–83

    PubMed  PubMed Central  Google Scholar 

  16. Semeniuk LM, Severson DL, Kryski AJ, Swirp SL, Molkentin JD, Duff HJ (2003) Time-dependent systolic and diastolic function in mice overexpressing calcineurin. Am J Physiol Heart Circ Physiol 284:H425–H430

    Article  CAS  PubMed  Google Scholar 

  17. Bauer M, Cheng S, Jain M, Ngoy S, Theodoropoulos S, Trujillo A, Lin FC, Liao R (2011) Echocardiographic speckle-tracking based strain imaging for rapid cardiovascular phenotyping in mice. Circ Res 108(8):908–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

  19. Chérin E, Williams R, Needles A, Liu G, White C, Brown AS, Zhou YQ, Foster FS (2006) Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo. Ultrasound Med Biol 32(5):683–691

    Article  PubMed  Google Scholar 

  20. Di Lascio N, Stea F, Kusmic C, Sicari R, Faita F (2014) Non-invasive assessment of pulse wave velocity in mice by means of ultrasound images. Atherosclerosis 237(1):31–37

    Article  PubMed  Google Scholar 

  21. Biglino G, Steeden JA, Baker C, Schievano S, Taylor AM, Parker KH, Muthurangu V (2012) A non-invasive clinical application of wave intensity analysis based on ultrahigh temporal resolution phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:57

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vriz O, Zito C, Di Bello V, La Carrubba S, Driussi C, Carerj S, Bossone E, Antonini-Canterin F (2016) Non-invasive one-point carotid wave intensity in a large group of healthy subjects: a ventricular-arterial coupling parameter. Heart Vessels 31(3):360–369

    Article  PubMed  Google Scholar 

  23. Chantler PD, Lakatta EG (2012) Arterial-ventricular coupling with aging and disease. Front Physiol 3:90

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bleasdale RA, Mumford CE, Campbell RI, Fraser AG, Jones CJ, Frenneaux MP (2003) Wave intensity analysis from the common carotid artery: a new noninvasive index of cerebral vasomotor tone. Heart Vessels 18(4):202–206

    Article  PubMed  Google Scholar 

  25. McEniery CM, Yasmin Hall IR, Qasem A, Wilkinson IB, Cockcroft JR, ACCT Investigators (2005) Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 46(9):1753–1760

    Article  PubMed  Google Scholar 

  26. Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson O, Garcia M, Aspelund T, Harris TB, Gudnason V, Launer LJ (2011) Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility—Reykjavik Study. Brain 134(11):3398–3407

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carrick-Ranson G, Hastings JL, Bhella PS, Shibata S, Fujimoto N, Palmer MD, Boyd K, Levine BD (2012) Effect of healthy aging on left ventricular relaxation and diastolic suction. Am J Physiol Heart Circ Physiol 303(3):H315–H322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmidt-Trucksäss A, Grathwohl D, Schmid A, Boragk R, Upmeier C, Keul J, Huonker M (1999) Structural, functional, and hemodynamic changes of the common carotid artery with age in male subjects. Arterioscler Thromb Vasc Biol 19(4):1091–1097

    Article  PubMed  Google Scholar 

  29. Samijo SK, Willigers JM, Barkhuysen R, Kitslaar PJEHM, Reneman RS, Brands PJ, Hoeks APG (1998) Wall shear stress in the human common carotid artery as function of age and gender. Cardiovasc Res 39:515–522

    Article  CAS  PubMed  Google Scholar 

  30. Boutouyrie P, Laurent S, Benetos A, Girerd XJ, Hoeks AP, Safar ME (1992) Opposing effects of ageing on distal and proximal large arteries in hypertensives. J Hypertens Suppl 10(6):S87–S91

    CAS  PubMed  Google Scholar 

  31. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H, European Network for Non-invasive Investigation of Large Arteries (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21):2588–2605

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Di Lascio.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Lascio, N., Kusmic, C., Stea, F. et al. Wave intensity analysis in mice: age-related changes in WIA peaks and correlation with cardiac indexes. Heart Vessels 32, 474–483 (2017). https://doi.org/10.1007/s00380-016-0914-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0914-y

Keywords

Navigation