Skip to main content
Log in

Two-temperature model for pulsed-laser-induced subsurface modifications in Si

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigated the laser–material interaction during the production of laser-induced subsurface modifications in silicon with a numerical model. Such modifications are of interest for subsurface wafer dicing. To predict the shape of these modifications, a two-temperature model and an optical model were combined. We compared the model results with experimental data obtained by focusing laser pulses in the bulk of silicon wafers using a microscope objective. This comparison revealed a good agreement between the simulations and the experimental results. A parameter study was performed to investigate the effect of the laser wavelength, pulse duration and pulse energy on the formation of subsurface modifications. We found that both single- and multi-photon absorption may be used to produce subsurface modifications in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26(6), 325 (2001)

    Article  ADS  Google Scholar 

  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71(23), 3329 (1997)

    Article  ADS  Google Scholar 

  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P.G. Kazansky, K. Hirao, Opt. Lett. 24(10), 646 (1999)

    Article  ADS  Google Scholar 

  4. S. Juodkazis, A. Rode, E. Gamaly, S. Matsuo, H. Misawa, Appl. Phys. B, Lasers Opt. 77, 361 (2003)

    Article  ADS  Google Scholar 

  5. A.H. Nejadmalayeri, P.R. Herman, J. Burghoff, M. Will, S. Nolte, A. Tünnermann, Opt. Lett. 30(9), 964 (2005)

    Article  ADS  Google Scholar 

  6. E. Ohmura, F. Fukuyo, F. Fukumitsu, H. Morita, J. Achiev. Mater. Manuf. Eng. 17, 381 (2006)

    Google Scholar 

  7. J. van Borkulo, R. Evertsen, R. Hendriks, ECS Trans. 18, 837 (2009)

    Article  Google Scholar 

  8. H.M. van Driel, Phys. Rev. B 35(15), 8166 (1987)

    Article  ADS  Google Scholar 

  9. A.L. Smirl, I.W. Boyd, T.F. Boggess, S.C. Moss, H.M. van Driel, J. Appl. Phys. 60(3), 1169 (1986)

    Article  ADS  Google Scholar 

  10. K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61(4), 2643 (2000)

    Article  ADS  Google Scholar 

  11. E.J. Yoffa, Phys. Rev. B 21(6), 2415 (1980)

    Article  ADS  Google Scholar 

  12. N. Bulgakova, R. Stoian, A. Rosenfeld, I. Hertel, W. Marine, E. Campbell, Appl. Phys. A, Mater. Sci. Process. 81, 345 (2005)

    Article  ADS  Google Scholar 

  13. A. Lietoila, J. Gibbons, J. Appl. Phys. 53(4), 3207 (1982)

    Article  ADS  Google Scholar 

  14. J. Chen, D. Tzou, J. Beraun, Int. J. Heat Mass Transf. 48(3–4), 501 (2005)

    Google Scholar 

  15. T. Monodane, E. Ohmura, F. Fukuyo, K. Fukumitsu, H. Morita, Y. Hirata, J. Laser Micro Nanoeng. 1, 231 (2006)

    Article  Google Scholar 

  16. I.B. Bogatyrev, D. Grojo, P. Delaporte, S. Leyder, M. Sentis, W. Marine, T.E. Itina, J. Appl. Phys. 110(10), 103106 (2011)

    Article  ADS  Google Scholar 

  17. M.I. Kaganov, I.M. Livshitz, L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)

    MATH  Google Scholar 

  18. F. Berz, R. Cooper, S. Fagg, Solid-State Electron. 22(3), 293 (1979)

    Article  ADS  Google Scholar 

  19. C. Bonacina, G. Comini, A. Fasano, M. Primicerio, Int. J. Heat Mass Transf. 16(10), 1825 (1973)

    Article  Google Scholar 

  20. H.R. Shanks, P.D. Maycock, P.H. Sidles, G.C. Danielson, Phys. Rev. 130(5), 1743 (1963)

    Article  ADS  Google Scholar 

  21. T. Sjodin, H. Petek, H.L. Dai, Phys. Rev. Lett. 81(25), 5664 (1998)

    Article  ADS  Google Scholar 

  22. N.G. Nilsson, Phys. Scr. 8(4), 165 (1973)

    Article  ADS  Google Scholar 

  23. W. van Roosbroeck, W. Shockley, Phys. Rev. 94, 1558 (1954)

    Article  ADS  Google Scholar 

  24. W. Shockley, W.T. Read Jr., Phys. Rev. 87, 835 (1952)

    Article  ADS  MATH  Google Scholar 

  25. C.G.B. Garrett, W.H. Brattain, Phys. Rev. 99, 376 (1955)

    Article  ADS  Google Scholar 

  26. S. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2007)

    Google Scholar 

  27. A.E. Siegman, in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (OSA, Washington, 1998), p. MQ1

    Google Scholar 

  28. H.H. Li, J. Phys. Chem. Ref. Data 9(3), 561 (1980)

    Article  ADS  Google Scholar 

  29. A. Singh, in IEEE International Conference on Group IV Photonics GFP (2010), pp. 102–104

    Chapter  Google Scholar 

  30. A.D. Bristow, N. Rotenberg, H.M. van Driel, Appl. Phys. Lett. 90(19), 191104 (2007)

    Article  ADS  Google Scholar 

  31. F.N. Fritsch, R.E. Carlson, SIAM J. Numer. Anal. 17(2), 238 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Y. Chung, N. Dagli, IEEE J. Quantum Electron. 27(10), 2296 (1991)

    Article  ADS  Google Scholar 

  33. R.E. Hummel, Electronic Properties of Materials, 3rd edn. (Springer, Berlin, 2001)

    Book  Google Scholar 

  34. M.A. Green, Sol. Energy Mater. Sol. Cells 92(11), 1305 (2008)

    Article  Google Scholar 

  35. Y.P. Varshni, Physica 34(1), 149 (1967)

    Article  ADS  Google Scholar 

  36. K. Yamaguchi, K. Itagaki, J. Therm. Anal. Calorim. 69, 1059 (2002)

    Article  Google Scholar 

  37. C.J. Glassbrenner, G.A. Slack, Phys. Rev. 134(4A), A1058 (1964)

    Article  ADS  Google Scholar 

  38. G. Jellison Jr., D. Lowndes, Appl. Phys. Lett. 41(7), 594 (1982)

    Article  ADS  Google Scholar 

  39. K.G. Svantesson, N.G. Nilsson, J. Phys. C 12(18), 3837 (1979)

    Article  ADS  Google Scholar 

  40. G.E. Jellison Jr., F.A. Modine, Phys. Rev. B 27, 7466 (1983)

    Article  ADS  Google Scholar 

  41. P. Jonsson, H. Bleichner, M. Isberg, E. Nordlander, J. Appl. Phys. 81(5), 2256 (1997)

    Article  ADS  Google Scholar 

  42. S. Sundaram, E. Mazur, Nat. Mater. 1(4), 217 (2002)

    Article  ADS  Google Scholar 

  43. I. Boyd, S. Moss, T. Boggess, A. Smirl, Appl. Phys. Lett. 45(1), 80 (1984)

    Article  ADS  Google Scholar 

  44. C. Ma, W.Y. Ho, R.M. Walser, M.F. Becker, in Proc. SPIE, vol. 1848 (1993), p. 59

    Google Scholar 

  45. X. Wang, Z. Shen, J. Lu, X. Ni, J. Appl. Phys. 108(3), 033103 (2010)

    Article  ADS  Google Scholar 

  46. J. Meyer, M. Kruer, F. Bartoli, J. Appl. Phys. 51(10), 5513 (1980)

    Article  ADS  Google Scholar 

  47. P.C. Verburg, G.R.B.E. Römer, G.H.M. Knippels, J. Betz, A.J. Huis in ’t Veld, in Proceedings of the 13th International Symposium on Laser Precision Microfabrication, June 12–15, 2012, Washington DC, USA (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bert Dillingh for his assistance with the initial finite element solver and Fred van Goor for providing access to a laser source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Verburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verburg, P.C., Römer, G.R.B.E. & Huis in ’t Veld, A.J. Two-temperature model for pulsed-laser-induced subsurface modifications in Si. Appl. Phys. A 114, 1135–1143 (2014). https://doi.org/10.1007/s00339-013-7668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7668-5

Keywords

Navigation