Skip to main content
Log in

In-depth metabolic phenotyping of genetically engineered mouse models in obesity and diabetes

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The world-wide prevalence of obesity and diabetes has increased sharply during the last two decades. Accordingly, the metabolic phenotyping of genetically engineered mouse models is critical for evaluating the functional roles of target genes in obesity and diabetes, and for developing new therapeutic targets. In this review, we discuss the practical meaning of metabolic phenotyping, the strategy of choosing appropriate tests, and considerations when designing and performing metabolic phenotyping in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metabol 295:E1323–E1332

    Article  CAS  Google Scholar 

  • Ayala JE, Bracy DP, McGuinness OP, Wasserman DH (2006) Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 55:390–397

    Article  PubMed  CAS  Google Scholar 

  • Bailey CJ, Flatt PR (1982) Hormonal control of glucose homeostasis during development and ageing in mice. Metabol Clin Exp 31:238–246

    Article  CAS  Google Scholar 

  • Bailey KR, Rustay NR, Crawley JN (2006) Behavioral phenotyping of transgenic and knockout mice: practical concerns and potential pitfalls. ILAR J 47:124–131

    Article  PubMed  CAS  Google Scholar 

  • Barthold SW (2004) Genetically altered mice: phenotypes, no phenotypes, and Faux phenotypes. Genetica 122:75–88

    Article  PubMed  CAS  Google Scholar 

  • Berglund ED, Li CY, Poffenberger G, Ayala JE, Fueger PT, Willis SE, Jewell MM, Powers AC, Wasserman DH (2008) Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes 57:1790–1799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Biddinger SB, Almind K, Miyazaki M, Kokkotou E, Ntambi JM, Kahn CR (2005) Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-CoA desaturase 1, and the development of the metabolic syndrome. Diabetes 54:1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Birkenfeld AL, Lee HY, Guebre-Egziabher F, Alves TC, Jurczak MJ, Jornayvaz FR, Zhang D, Hsiao JJ, Martin-Montalvo A, Fischer-Rosinsky A, Spranger J, Pfeiffer AF, Jordan J, Fromm MF, Konig J, Lieske S, Carmean CM, Frederick DW, Weismann D, Knauf F, Irusta PM, De Cabo R, Helfand SL, Samuel VT, Shulman GI (2011) Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metabol 14:184–195

    Article  CAS  Google Scholar 

  • Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG (2004) Genetic and behavioral differences among five inbred mouse strains commonly used in the production of transgenic and knockout mice. Genes Brain Behav 3:149–157

    Article  PubMed  CAS  Google Scholar 

  • Brommage R (2003) Validation and calibration of DEXA body composition in mice. Am J Physiol Endocrinol Metabol 285:E454–E459

    CAS  Google Scholar 

  • Brown ET, Umino Y, Loi T, Solessio E, Barlow R (2005) Anesthesia can cause sustained hyperglycemia in C57/BL6J mice. Vis Neurosci 22:615–618

    Article  PubMed  CAS  Google Scholar 

  • Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, McRoberts JA (2008) Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J Neurogenet 22:315–331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Scholmerich J, Bollheimer LC (2006) Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 36:485–501

    Article  PubMed  CAS  Google Scholar 

  • Choi CS, Fillmore JJ, Kim JK, Liu ZX, Kim S, Collier EF, Kulkarni A, Distefano A, Hwang YJ, Kahn M, Chen Y, Yu C, Moore IK, Reznick RM, Higashimori T, Shulman GI (2007a) Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Investig 117:1995–2003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choi CS, Savage DB, Abu-Elheiga L, Liu ZX, Kim S, Kulkarni A, Distefano A, Hwang YJ, Reznick RM, Codella R, Zhang D, Cline GW, Wakil SJ, Shulman GI (2007b) Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc Natl Acad Sci USA 104:16480–16485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, Kim S, Distefano A, Samuel VT, Neschen S, Zhang D, Wang A, Zhang XM, Kahn M, Cline GW, Pandey SK, Geisler JG, Bhanot S, Monia BP, Shulman GI (2007c) Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282:22678–22688

    Article  PubMed  CAS  Google Scholar 

  • Choi CS, Befroy DE, Codella R, Kim S, Reznick RM, Hwang YJ, Liu ZX, Lee HY, Distefano A, Samuel VT, Zhang D, Cline GW, Handschin C, Lin J, Petersen KF, Spiegelman BM, Shulman GI (2008) Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci USA 105:19926–19931

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choi CS, Kim MY, Han K, Lee MS (2012) Assessment of beta-cell function in human patients. Islets 4:79–83

    Article  PubMed  Google Scholar 

  • Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, Kellis M, Lindblad-Toh K, Lander ES (2007) Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA 104:19428–19433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collins S, Martin TL, Surwit RS, Robidoux J (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav 81:243–248

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132:107–124

    Article  PubMed  CAS  Google Scholar 

  • DeFronzo RA, Ferrannini E (1991) Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194

    Article  PubMed  CAS  Google Scholar 

  • DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223

    PubMed  CAS  Google Scholar 

  • Ellacott KL, Morton GJ, Woods SC, Tso P, Schwartz MW (2010) Assessment of feeding behavior in laboratory mice. Cell Metabol 12:10–17

    Article  CAS  Google Scholar 

  • Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149–1160

    Article  PubMed  Google Scholar 

  • Ferrannini E, Mari A (1998) How to measure insulin sensitivity. J Hypertens 16:895–906

    Article  PubMed  CAS  Google Scholar 

  • Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fox JG (2002) Laboratory animal medicine, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  • Freeman H, Shimomura K, Horner E, Cox RD, Ashcroft FM (2006a) Nicotinamide nucleotide transhydrogenase: a key role in insulin secretion. Cell Metabol 3:35–45

    Article  CAS  Google Scholar 

  • Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD (2006b) Deletion of nicotinamide nucleotide transhydrogenase: a new quantitative trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55:2153–2156

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gordon CJ (2004) Effect of cage bedding on temperature regulation and metabolism of group-housed female mice. Comp Med 54:63–68

    PubMed  CAS  Google Scholar 

  • Gordon CJ, Becker P, Ali JS (1998) Behavioral thermoregulatory responses of single- and group-housed mice. Physiol Behav 65:255–262

    Article  PubMed  CAS  Google Scholar 

  • Grundleger ML, Godbole VY, Thenen SW (1980) Age-dependent development of insulin resistance of soleus muscle in genetically obese (ob/ob) mice. Am J Physiol 239:E363–E371

    PubMed  CAS  Google Scholar 

  • Halldorsdottir S, Carmody J, Boozer CN, Leduc CA, Leibel RL (2009) Reproducibility and accuracy of body composition assessments in mice by dual energy x-ray absorptiometry and time domain nuclear magnetic resonance. Int J Body Compos Res 7:147–154

    PubMed  PubMed Central  Google Scholar 

  • Heikkinen S, Argmann CA, Champy MF, Auwerx J (2007) Evaluation of glucose homeostasis. In: Ausubel FM et al. Current protocols in molecular biology, Chapter 29, Unit 29B 23. John Wiley & Sons, Inc., USA. http://www.scimagojr.com/journalsearch.php?q=10600153354&tip=sid)(http://www.ncbi.nlm.nih.gov/pubmed/18265403

  • Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185

    PubMed  CAS  PubMed Central  Google Scholar 

  • Himms-Hagen J, Villemure C (1992) Number of mice per cage influences uncoupling protein content of brown adipose tissue. Proc Soc Exp Biol Med 200:502–506

    Article  PubMed  CAS  Google Scholar 

  • Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya F (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286:12983–12990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horvath TL, Andrews ZB, Diano S (2009) Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metabol 20:78–87

    Article  CAS  Google Scholar 

  • Huang TT, Naeemuddin M, Elchuri S, Yamaguchi M, Kozy HM, Carlson EJ, Epstein CJ (2006) Genetic modifiers of the phenotype of mice deficient in mitochondrial superoxide dismutase. Hum Mol Genet 15:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Takahashi M, Tsunoda N, Maruyama K, Itakura H, Ezaki O (1996) High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Metabol Clin Exp 45:1539–1546

    Article  CAS  Google Scholar 

  • Jacobson L, Ansari T, McGuinness OP (2006) Counterregulatory deficits occur within 24 h of a single hypoglycemic episode in conscious, unrestrained, chronically cannulated mice. Am J Physiol Endocrinol Metabol 290:E678–E684

    Article  CAS  Google Scholar 

  • Kaiyala KJ, Schwartz MW (2011) Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60:17–23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaiyala KJ, Morton GJ, Leroux BG, Ogimoto K, Wisse B, Schwartz MW (2010) Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59:1657–1666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DK, Gang GT, Ryu D, Koh M, Kim YN, Kim SS, Park J, Kim YH, Sim T, Lee IK, Choi CS, Park SB, Lee CH, Koo SH, Choi HS (2013a) Inverse agonist of nuclear receptor ERRgamma mediates antidiabetic effect through inhibition of hepatic gluconeogenesis. Diabetes 62:3093–3102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim do H, Hur KY, Kim HK, Ko T, Han J, Kim HL, Kim J, Back SH, Komatsu M, Chen H, Chan DC, Konishi M, Itoh N, Choi CS, Lee MS (2013b) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19:83–92

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni RN, Almind K, Goren HJ, Winnay JN, Ueki K, Okada T, Kahn CR (2003) Impact of genetic background on development of hyperinsulinemia and diabetes in insulin receptor/insulin receptor substrate-1 double heterozygous mice. Diabetes 52:1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, Zhang D, Woo DK, Shadel GS, Ladiges W, Rabinovitch PS, Santos JH, Petersen KF, Samuel VT, Shulman GI (2010a) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metabol 12:668–674

    Article  CAS  Google Scholar 

  • Lee MW, Chanda D, Yang J, Oh H, Kim SS, Yoon YS, Hong S, Park KG, Lee IK, Choi CS, Hanson RW, Choi HS, Koo SH (2010b) Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metabol 11:331–339

    Article  CAS  Google Scholar 

  • Lee HY, Birkenfeld AL, Jornayvaz FR, Jurczak MJ, Kanda S, Popov V, Frederick DW, Zhang D, Guigni B, Bharadwaj KG, Choi CS, Goldberg IJ, Park JH, Petersen KF, Samuel VT, Shulman GI (2011) Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology 54:1650–1660

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Linder CC (2001) The influence of genetic background on spontaneous and genetically engineered mouse models of complex diseases. Lab animal 30:34–39

    PubMed  CAS  Google Scholar 

  • Lodhi IJ, Semenkovich CF (2009) Why we should put clothes on mice. Cell Metabol 9:111–112

    Article  CAS  Google Scholar 

  • Macotela Y, Boucher J, Tran TT, Kahn CR (2009) Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58:803–812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mahner M, Kary M (1997) What exactly are genomes, genotypes and phenotypes? And what about phenomes? J Theor Biol 186:55–63

    Article  PubMed  CAS  Google Scholar 

  • Mazess RB, Barden HS, Bisek JP, Hanson J (1990) Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr 51:1106–1112

    PubMed  CAS  Google Scholar 

  • McGuinness OP, Ayala JE, Laughlin MR, Wasserman DH (2009) NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metabol 297:E849–E855

    Article  CAS  Google Scholar 

  • Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, Obata Y, Yoshiki A (2009) Genetic differences among C57BL/6 substrains. Exp Anim 58:141–149

    Article  PubMed  CAS  Google Scholar 

  • Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C, Roemisch-Margl W, Polonikov A, Peters A, Theis FJ, Meitinger T, Kronenberg F, Weidinger S, Wichmann HE, Suhre K, Wang-Sattler R, Adamski J, Illig T (2011) Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet 7:e1002215

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mulligan MK, Ponomarev I, Boehm SL 2nd, Owen JA, Levin PS, Berman AE, Blednov YA, Crabbe JC, Williams RW, Miles MF, Bergeson SE (2008) Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. Genes Brain Behav 7:677–689

    Article  PubMed  CAS  Google Scholar 

  • Muniyappa R, Lee S, Chen H, Quon MJ (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metabol 294:E15–E26

    Article  CAS  Google Scholar 

  • Nagy TR, Clair AL (2000) Precision and accuracy of dual-energy X-ray absorptiometry for determining in vivo body composition of mice. Obes Res 8:392–398

    Article  PubMed  CAS  Google Scholar 

  • Neschen S, Moore I, Regittnig W, Yu CL, Wang Y, Pypaert M, Petersen KF, Shulman GI (2002) Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am J Physiol Endocrinol Metabol 282:E395–E401

    CAS  Google Scholar 

  • Oh KJ, Park J, Kim SS, Oh H, Choi CS, Koo SH (2012) TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver. PLoS Genet 8:e1002986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peltonen L, McKusick VA (2001) Genomics and medicine. Dissecting human disease in the postgenomic era. Science 291:1224–1229

  • Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, Papademetris X, Rothman DL, Shulman GI (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA 104:12587–12594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113:898–918

    Article  PubMed  Google Scholar 

  • Reaven GM (2005) The insulin resistance syndrome: definition and dietary approaches to treatment. Annu Rev Nutr 25:391–406

    Article  PubMed  CAS  Google Scholar 

  • Reitman ML (2007) FGF21: a missing link in the biology of fasting. Cell Metabol 5:405–407

    Article  CAS  Google Scholar 

  • Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rossetti L, Giaccari A (1990) Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake. A dose-response euglycemic clamp study in normal and diabetic rats. J Clin Investig 85:1785–1792

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rossmeisl M, Rim JS, Koza RA, Kozak LP (2003) Variation in type 2 diabetes–related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52:1958–1966

    Article  PubMed  CAS  Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  • Ryu D, Oh KJ, Jo HY, Hedrick S, Kim YN, Hwang YJ, Park TS, Han JS, Choi CS, Montminy M, Koo SH (2009) TORC2 regulates hepatic insulin signaling via a mammalian phosphatidic acid phosphatase, LIPIN1. Cell Metabol 9:240–251

    Article  CAS  Google Scholar 

  • Salehi M, Aulinger BA, D’Alessio DA (2008) Targeting beta-cell mass in type 2 diabetes: promise and limitations of new drugs based on incretins. Endocr Rev 29:367–379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samuel VT, Choi CS, Phillips TG, Romanelli AJ, Geisler JG, Bhanot S, McKay R, Monia B, Shutter JR, Lindberg RA, Shulman GI, Veniant MM (2006) Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 55:2042–2050

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Chou TC, Elmquist JK (2002) The need to feed: homeostatic and hedonic control of eating. Neuron 36:199–211

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Strader AD, Sorrell JE, Chambers JB, Woods SC, Seeley RJ (2008) Sexually different actions of leptin in proopiomelanocortin neurons to regulate glucose homeostasis. Am J Physiol Endocrinol Metabol 294:E630–E639

    Article  CAS  Google Scholar 

  • Speakman JR (2013) Measuring energy metabolism in the mouse—theoretical, practical, and analytical considerations. Front Physiol 4:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Swoap SJ, Overton JM, Garber G (2004) Effect of ambient temperature on cardiovascular parameters in rats and mice: a comparative approach. Am J Physiol Regul Integr Comp Physiol 287:R391–R396

    Article  PubMed  CAS  Google Scholar 

  • Taicher GZ, Tinsley FC, Reiderman A, Heiman ML (2003) Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem 377:990–1002

    Article  PubMed  CAS  Google Scholar 

  • Tinsley FC, Taicher GZ, Heiman ML (2004) Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obes Res 12:150–160

    Article  PubMed  Google Scholar 

  • Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C, Herman MA, Horvath TL, Kahn BB, Kozma SC, Maratos-Flier E, Muller TD, Munzberg H, Pfluger PT, Plum L, Reitman ML, Rahmouni K, Shulman GI, Thomas G, Kahn CR, Ravussin E (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9:57–63

    Article  Google Scholar 

  • Wang H, Storlien LH, Huang XF (2002) Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression. Am J Physiol Endocrinol Metabol 282:E1352–E1359

    CAS  Google Scholar 

  • Wiechert W, Schweissgut O, Takanaga H, Frommer WB (2007) Fluxomics: mass spectrometry versus quantitative imaging. Curr Opin Plant Biol 10:323–330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams KW, Elmquist JK (2012) From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 15:1350–1355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wolfer DP, Crusio WE, Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25:336–340

    Article  PubMed  CAS  Google Scholar 

  • Wurst W, de Angelis MH (2010) Systematic phenotyping of mouse mutants. Nat Biotechnol 28:684–685

    Article  PubMed  CAS  Google Scholar 

  • Yeo GS, Heisler LK (2012) Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15:1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Yoon YS, Lee MW, Ryu D, Kim JH, Ma H, Seo WY, Kim YN, Kim SS, Lee CH, Hunter T, Choi CS, Montminy MR, Koo SH (2010) Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proc Natl Acad Sci USA 107:17704–17709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Youn JH, Buchanan TA (1993) Fasting does not impair insulin-stimulated glucose uptake but alters intracellular glucose metabolism in conscious rats. Diabetes 42:757–763

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (#2013M3A9D5072563) and the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Korea (#A102060).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Cheol Soo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HY., Jeong, KH., Choi, C.S. et al. In-depth metabolic phenotyping of genetically engineered mouse models in obesity and diabetes. Mamm Genome 25, 508–521 (2014). https://doi.org/10.1007/s00335-014-9520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-014-9520-4

Keywords

Navigation