Skip to main content
Log in

Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: a matched-pair comparison with a 120 kVp protocol

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the image quality and lesion conspicuity of virtual-monochromatic-imaging (VMI) with dual-layer DECT (DL-DECT) for reduced-iodine-load multiphasic-hepatic CT.

Methods

Forty-five adults with renal dysfunction who had undergone hepatic DL-DECT with 300-mgI/kg were included. VMI (40–70-keV, DL-DECT-VMI) was generated at each enhancement phase. As controls, 45 matched patients undergoing standard 120-kVp protocol (120-kVp, 600-mgI/kg, and iterative reconstruction) were included. We compared the size-specific dose estimate (SSDE), image noise, CT attenuation, and contrast-to-noise ratio (CNR) between protocols. Two radiologists scored the image quality and lesion conspicuity.

Results

SSDE was significantly lower in DL-DECT group (p < 0.01). Image noise of DL-DECT-VMI was almost constant at each keV (differences of ≤15%) and equivalent to or lower than of 120-kVp. As the energy decreased, CT attenuation and CNR gradually increased; the values of 55-60 keV images were almost equivalent to those of standard 120-kVp. The highest scores for overall quality and lesion conspicuity were assigned at 40-keV followed by 45 to 55-keV, all of which were similar to or better than of 120-kVp.

Conclusions

For multiphasic-hepatic CT with 50% iodine-load, DL-DECT-VMI at 40- to 55-keV provides equivalent or better image quality and lesion conspicuity without increasing radiation dose compared with standard 120-kVp protocol.

Key Points

40-55-keV yields optimal image quality for half-iodine-load multiphasic-hepatic CT with DL-DECT.

DL-DECT protocol decreases radiation exposure compared with 120-kVp scans with iterative reconstruction.

40-keV images maximise conspicuity of hepatocellular carcinoma especially at hepatic-arterial phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CM:

Contrast medium

CNR:

Contrast-to-noise ratio

CTDIvol :

volume CT dose index

DECT:

Dual-energy CT

DL-DECT:

Dual-layer dual-energy CT

eGFR:

Estimated glomerular filtration rate

EP:

Equilibrium phase

HAP:

Hepatic arterial phase

HCC:

Hepatocellular carcinoma

IR:

Iterative reconstruction

PVP:

Portal venous phase

ROI:

Region of interest

SSDE:

Size-specific dose estimate

TLC:

Tumour-to-liver contrast

TL-CNR:

Tumour-to liver contrast-to-noise ratio

VMI:

Virtual monochromatic imaging

References

  1. Heiken JP, Brink JA, McClennan BL, Sagel SS, Crowe TM, Gaines MV (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195:353–357

    Article  CAS  PubMed  Google Scholar 

  2. Yamashita Y, Komohara Y, Takahashi M et al (2000) Abdominal helical CT: evaluation of optimal doses of intravenous contrast material--a prospective randomized study. Radiology 216:718–723

    Article  CAS  PubMed  Google Scholar 

  3. McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE (2014) Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology 271:65–73

    Article  PubMed  Google Scholar 

  4. Launay-Vacher V, Oudard S, Janus N et al (2007) Prevalence of Renal Insufficiency in cancer patients and implications for anticancer drug management: the renal insufficiency and anticancer medications (IRMA) study. Cancer 110:1376–1384

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Compean D, Jaquez-Quintana JO, Maldonado-Garza H (2009) Hepatogenous diabetes. Current views of an ancient problem. Ann Hepatol 8:13–20

    CAS  PubMed  Google Scholar 

  6. Stacul F, van der Molen AJ, Reimer P et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21:2527–2541

    Article  PubMed  Google Scholar 

  7. Cicin I, Erdogan B, Gulsen E et al (2014) Incidence of contrast-induced nephropathy in hospitalised patients with cancer. Eur Radiol 24:184–190

    Article  PubMed  Google Scholar 

  8. Mangold S, Wichmann JL, Schoepf UJ et al (2016) Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3(rd) generation dual-source CT. Eur Radiol 26:3608–3616

    Article  PubMed  Google Scholar 

  9. Taguchi N, Oda S, Utsunomiya D et al (2016) Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50 % in patients at risk for contrast-induced nephropathy. Eur Radiol. https://doi.org/10.1007/s00330-016-4435-y

  10. Albrecht MH, Scholtz JE, Husers K et al (2016) Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast. Eur Radiol 26:1863–1870

    Article  PubMed  Google Scholar 

  11. Albrecht MH, Scholtz JE, Kraft J et al (2015) Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer. Eur Radiol 25:2493–2501

    Article  PubMed  Google Scholar 

  12. Lv P, Lin XZ, Chen K, Gao J (2012) Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol 22:2117–2124

    Article  PubMed  Google Scholar 

  13. Delesalle MA, Pontana F, Duhamel A et al (2013) Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology 267:256–266

    Article  PubMed  Google Scholar 

  14. Agrawal MD, Oliveira GR, Kalva SP, Pinho DF, Arellano RS, Sahani DV (2016) Prospective Comparison of Reduced-Iodine-Dose Virtual Monochromatic Imaging Dataset From Dual-Energy CT Angiography With Standard-Iodine-Dose Single-Energy CT Angiography for Abdominal Aortic Aneurysm. AJR Am J Roentgenol 207:W125–w132

    Article  PubMed  Google Scholar 

  15. Shuman WP, Chan KT, Busey JM, Mitsumori LM, Koprowicz KM (2016) Dual-energy CT Aortography with 50% Reduced Iodine Dose Versus Single-energy CT Aortography with Standard Iodine Dose. Acad Radiol 23:611–618

    Article  PubMed  Google Scholar 

  16. Kanal KM, Chung JH, Wang J et al (2011) Image noise and liver lesion detection with MDCT: a phantom study. AJR Am J Roentgenol 197:437–441

    Article  PubMed  Google Scholar 

  17. Schindera ST, Torrente JC, Ruder TD et al (2011) Decreased detection of hypovascular liver tumors with MDCT in obese patients: a phantom study. AJR Am J Roentgenol 196:W772–W776

    Article  PubMed  Google Scholar 

  18. Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37:234–243

    Article  PubMed  Google Scholar 

  19. Marin D, Ramirez-Giraldo JC, Gupta S et al (2016) Effect of a Noise-Optimized Second-Generation Monoenergetic Algorithm on Image Noise and Conspicuity of Hypervascular Liver Tumors: An In Vitro and In Vivo Study. AJR Am J Roentgenol 206:1222–1232

    Article  PubMed  Google Scholar 

  20. Bellini D, Gupta S, Ramirez-Giraldo JC et al (2017) Use of a Noise Optimized Monoenergetic Algorithm for Patient-Size Independent Selection of an Optimal Energy Level During Dual-Energy CT of the Pancreas. J Comput Assist Tomogr 41:39–47

    Article  PubMed  Google Scholar 

  21. Caruso D, De Cecco CN, Schoepf UJ et al (2017) Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Clin Imaging 41:118–124

    Article  PubMed  Google Scholar 

  22. Lv P, Liu J, Chai Y, Yan X, Gao J, Dong J (2017) Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience. Eur Radiol 27:374–383

    Article  PubMed  Google Scholar 

  23. van Hamersvelt RW, Schilham AM, Engelke K et al (2017) Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study. Eur Radiol. https://doi.org/10.1007/s00330-017-4801-4

  24. Hickethier T, Baessler B, Kroeger JR et al (2017) Monoenergetic reconstructions for imaging of coronary artery stents using spectral detector CT: In-vitro experience and comparison to conventional images. J Cardiovasc Comput Tomogr 11:33–39

    Article  PubMed  Google Scholar 

  25. Doerner J, Hauger M, Hickethier T et al (2017) Image quality evaluation of dual-layer spectral detector CT of the chest and comparison with conventional CT imaging. Eur J Radiol 93:52–58

    Article  PubMed  Google Scholar 

  26. Kalender WA, Klotz E, Kostaridou L (1988) An algorithm for noise suppression in dual energy CT material density images. IEEE Trans Med Imaging 7:218–224

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744

    Article  CAS  PubMed  Google Scholar 

  28. Maass C, Baer M, Kachelriess M (2009) Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Med Phys 36:3818–3829

    Article  PubMed  Google Scholar 

  29. Maass C, Meyer E, Kachelriess M (2011) Exact dual energy material decomposition from inconsistent rays (MDIR). Med Phys 38:691–700

    Article  PubMed  Google Scholar 

  30. Chang W, Lee JM, Lee K et al (2013) Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography. Invest Radiol 48:598–606

    Article  CAS  PubMed  Google Scholar 

  31. Choi JY, Lee JM, Sirlin CB (2014) CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology 273:30–50

    Article  PubMed  PubMed Central  Google Scholar 

  32. Christner JA, Braun NN, Jacobsen MC, Carter RE, Kofler JM, McCollough CH (2012) Size-specific dose estimates for adult patients at CT of the torso. Radiology 265:841–847

    Article  PubMed  Google Scholar 

  33. Clark ZE, Bolus DN, Little MD, Morgan DE (2015) Abdominal rapid-kVp-switching dual-energy MDCT with reduced IV contrast compared to conventional MDCT with standard weight-based IV contrast: an intra-patient comparison. Abdom Imaging 40:852–858

    Article  PubMed  Google Scholar 

  34. Tsang DS, Merchant TE, Merchant SE, Smith H, Yagil Y, Hua CH (2017) Quantifying potential reduction in contrast dose with monoenergetic images synthesized from dual layer detector spectral CT. Br J Radiol. https://doi.org/10.1259/bjr.20170290:20170290

  35. Lehmann LA, Alvarez RE, Macovski A et al (1981) Generalized image combinations in dual KVP digital radiography. Med Phys 8:659–667

    Article  CAS  PubMed  Google Scholar 

  36. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199:S9–s15

    Article  PubMed  Google Scholar 

  37. Zhao X, Hu JJ, Zhao YS, Zhang HT, Zhang P (2014) Iterative dual energy material decomposition from spatial mismatched raw data sets. J Xray Sci Technol 22:745–762

    CAS  PubMed  Google Scholar 

  38. Dong X, Niu T, Zhu L (2014) Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization. Med Phys 41:051909

    Article  PubMed  Google Scholar 

  39. Fujigai T, Kumano S, Okada M et al (2012) Optimal dose of contrast medium for depiction of hypervascular HCC on dynamic MDCT. Eur J Radiol 81:2978–2983

    Article  PubMed  Google Scholar 

  40. Nakaura T, Nakamura S, Maruyama N et al (2012) Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology 264:445–454

    Article  PubMed  Google Scholar 

  41. Leng S, Yu L, Fletcher JG, McCollough CH (2015) Maximizing Iodine Contrast-to-Noise Ratios in Abdominal CT Imaging through Use of Energy Domain Noise Reduction and Virtual Monoenergetic Dual-Energy CT. Radiology 276:562–570

    Article  PubMed  PubMed Central  Google Scholar 

  42. Husarik DB, Gordic S, Desbiolles L et al (2015) Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: ex-vivo and patient experience in various body sizes. Invest Radiol 50:695–702

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Nagayama.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Yasuyuki Yamashita.

Conflict of interest

The authors of this manuscript declare no relationships with any companies.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Methodology

• retrospective

• case-control study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagayama, Y., Nakaura, T., Oda, S. et al. Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: a matched-pair comparison with a 120 kVp protocol. Eur Radiol 28, 1719–1730 (2018). https://doi.org/10.1007/s00330-017-5114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5114-3

Keywords

Navigation