Skip to main content
Log in

Changes in the T2 value of cartilage after meniscus transplantation over 1 year

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the changes in the mean T2 values of articular cartilage on serial follow-up images up to 1 year in patients who underwent lateral meniscus allograft transplantation (MAT).

Methods

Fifty-two patients who underwent lateral MAT surgery at our hospital were evaluated preoperatively and at 2 days, 6 weeks, 3 months, 6 months, and 1 year after MAT using 3.0-T magnetic resonance imaging (MRI) that included T2 mapping. T2 value changes according to the arthroscopic grading of chondromalacia were evaluated in the lateral and medial compartment. Lysholm scores were obtained pre- and postoperatively.

Results

The T2 values of cartilage were significantly increased 2 days after operation, and then gradually reduced to the baseline level after 1 year in both compartments. In morphologic assessment performed after 1 year, most areas (92.9 %) showed no interval change of chondromalacia grade. Lyshom knee scores increased significantly from the mean preoperative value of 62.5 (range, 23–95) to 89.7 (range, 64–100) at 1 year (p < 0.001).

Conclusion

Mean T2 values of cartilage following MAT exhibited a return to baseline level after 1 year. T2 measurement can be a useful tool for quantitative evaluation of postoperative cartilage changes compared to conventional MRI.

Key Points

T2 mapping provides objective data for longitudinal monitoring following surgery.

Increased cartilage T2 values post-MAT returned to baseline in one year.

Further studies are required to predict the chondroprotective effect of MAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sekiya JK, Ellingson CI (2006) Meniscal allograft transplantation. J Am Acad Orthop Surg 14:164–174

    Article  PubMed  Google Scholar 

  2. Rijk PC (2004) Meniscal allograft transplantation—part I: background, results, graft selection and preservation, and surgical considerations. Arthroscopy 20:728–743

    Article  PubMed  Google Scholar 

  3. Verdonk PC, Verstraete KL, Almqvist KF et al (2006) Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surg Sports Traumatol Arthrosc 14:694–706

    Article  PubMed  Google Scholar 

  4. Wirth CJ, Peters G, Milachowski KA, Weismeier KG, Kohn D (2002) Long-term results of meniscal allograft transplantation. Am J Sports Med 30:174–181

    PubMed  Google Scholar 

  5. Lubowitz JH, Verdonk PCM, Reid JB III, Verdonk R (2007) Meniscus allograft transplantation: a current concepts review. Knee Surg Sports Traumatol Arthrosc 15:476–492

    Article  PubMed  Google Scholar 

  6. Lee B-S, Kim J-M, Sohn D-W, Bin S-I (2013) Review of meniscal allograft transplantation focusing on long-term results and evaluation methods. Knee Surg Relat Res 25:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alparslan L, Winalski CS, Boutin RD, Minas T (2001) Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 5:345–363

    Article  CAS  PubMed  Google Scholar 

  8. Verstraete KL, Verdonk R, Lootens T, Verstraete P, De Rooy J, Kunnen M (1997) Current status and imaging of allograft meniscal transplantation. Eur J Radiol 26:16–22

    Article  CAS  PubMed  Google Scholar 

  9. Lee BS, Chung JW, Kim JM, Cho WJ, Kim KA, Bin SI (2012) Morphologic changes in fresh-frozen meniscus allografts over 1 year: a prospective magnetic resonance imaging study on the width and thickness of transplants. Am J Sports Med 40:1384–1391

    Article  PubMed  Google Scholar 

  10. Lee DH, Kim TH, Lee SH, Kim CW, Kim JM, Bin SI (2008) Evaluation of meniscus allograft transplantation with serial magnetic resonance imaging during the first postoperative year: focus on graft extrusion. Arthroscopy 24:1115–1121

    Article  PubMed  Google Scholar 

  11. Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118

    Article  CAS  PubMed  Google Scholar 

  12. Horng A, Raya JG, Stockinger M et al (2015) Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T. Eur Radiol 25:1731–1741

    Article  PubMed  Google Scholar 

  13. Disler DG, McCauley TR, Wirth CR, Fuchs MD (1995) Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 165:377–382

    Article  CAS  PubMed  Google Scholar 

  14. Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267:503–513

    Article  PubMed  Google Scholar 

  15. Rubenstein JD, Li JG, Majumdar S, Henkelman RM (1997) Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol 169:1089–1096

    Article  CAS  PubMed  Google Scholar 

  16. Cha JG, Yi JS, Han JK, Lee YK (2015) Comparison of Quantitative Cartilage T2 Measurements and Qualitative MR Imaging between Professional Ballet Dancers and Healthy Volunteers. Radiology 276:199–206

    Article  PubMed  Google Scholar 

  17. Link TM, Stahl R, Woertler K (2007) Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 17:1135–1146

    Article  PubMed  Google Scholar 

  18. Kim HK, Laor T, Graham TB et al (2010) T2 relaxation time changes in distal femoral articular cartilage in children with juvenile idiopathic arthritis: a 3-year longitudinal study. AJR Am J Roentgenol 195:1021–1025

    Article  PubMed  Google Scholar 

  19. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368

    Article  PubMed  Google Scholar 

  20. Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures--initial experience. Radiology 247:154–161

    Article  PubMed  Google Scholar 

  21. Welsch GH, Mamisch TC, Quirbach S, Zak L, Marlovits S, Trattnig S (2009) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19:1253–1262

    Article  PubMed  Google Scholar 

  22. Crema MD, Roemer FW, Marra MD et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61

    Article  PubMed  Google Scholar 

  23. Mamisch TC, Trattnig S, Quirbach S, Marlovits S, White LM, Welsch GH (2010) Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading--initial results. Radiology 254:818–826

    Article  PubMed  Google Scholar 

  24. Nardo L, Carballido-Gamio J, Tang S, Lai A, Krug R (2016) Quantitative assessment of morphology, T, and T of shoulder cartilage using MRI. Eur Radiol. doi:10.1007/s00330-016-4322-6

    Google Scholar 

  25. Juras V, Bohndorf K, Heule R et al (2015) A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage. Eur Radiol. doi:10.1007/s00330-015-3979-6

    PubMed Central  Google Scholar 

  26. Raya JG, Dietrich O, Horng A, Weber J, Reiser MF, Glaser C (2010) T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Med 63:181–193

    PubMed  Google Scholar 

  27. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13:456–460

    Article  CAS  PubMed  Google Scholar 

  28. Mandelbaum BR, Browne JE, Fu F et al (1998) Articular cartilage lesions of the knee. Am J Sports Med 26:853–861

    CAS  PubMed  Google Scholar 

  29. Wright RW (2009) Knee injury outcomes measures. J Am Acad Orthop Surg 17:31–39

    Article  PubMed  Google Scholar 

  30. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974

    Article  CAS  PubMed  Google Scholar 

  31. Büsing KA, Kilian AK, Schaible T, Debus A, Weiss C, Neff KW (2008) Reliability and Validity of MR Image Lung Volume Measurement in Fetuses with Congenital Diaphragmatic Hernia and in Vitro Lung Models 1. Radiology 246:553–561

    Article  PubMed  Google Scholar 

  32. Smith NA, MacKay N, Costa M, Spalding T (2015) Meniscal allograft transplantation in a symptomatic meniscal deficient knee: a systematic review. Knee Surg Sports Traumatol Arthrosc 23:270–279

    Article  PubMed  Google Scholar 

  33. Milachowski KA, Weismeier K, Wirth CJ (1989) Homologous meniscus transplantation. Int Orthop 13:1–11

    Article  CAS  PubMed  Google Scholar 

  34. Vanwanseele B, Lucchinetti E, Stussi E (2002) The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions. Osteoarthritis Cartil 10:408–419

    Article  CAS  Google Scholar 

  35. Rubenstein JD, Kim JK, Henkelman RM (1996) Effects of compression and recovery on bovine articular cartilage: appearance on MR images. Radiology 201:843–850

    Article  CAS  PubMed  Google Scholar 

  36. Subburaj K, Kumar D, Souza RB et al (2012) The acute effect of running on knee articular cartilage and meniscus magnetic resonance relaxation times in young healthy adults. Am J Sports Med 40:2134–2141

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lusse S, Claassen H, Gehrke T et al (2000) Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 18:423–430

    Article  CAS  PubMed  Google Scholar 

  38. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232:592–598

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nickinson R, Darrah C, Donell S (2010) Accuracy of clinical diagnosis in patients undergoing knee arthroscopy. Int Orthop 34:39–44

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Sang Hoon Lee, professor at the Asan Medical Center. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was waived by the Institutional Review Board.

Methodology: retrospective, observational study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hoon Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SY., Lee, S.H., Lee, M.H. et al. Changes in the T2 value of cartilage after meniscus transplantation over 1 year. Eur Radiol 27, 1496–1504 (2017). https://doi.org/10.1007/s00330-016-4497-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4497-x

Keywords

Navigation