Skip to main content
Log in

Characterization of a vacuolar H+-ATPase G subunit gene from Juglans regia (JrVHAG1) involved in mannitol-induced osmotic stress tolerance

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

JrVHAG1 is an important candidate gene for plant osmotic tolerance regulation.

Abstract

Vacuolar H+-ATPase (V-ATPase) is important for plant responses to abiotic stress; the G subunit is a vital part of V-ATPase. In this study, a G subunit of V-ATPase was cloned from Juglans regia (JrVHAG1) and functionally characterized. JrVHAG1 transcription was induced by mannitol that increasing 17.88-fold in the root at 12 h and 19.16-fold in the leaf at 96 h compared to that under control conditions. JrVHAG1 was overexpressed in Arabidopsis and three lines (G2, G6, and G9) with highest expression levels were selected for analysis. The results showed that under normal conditions, the transgenic and wild-type (WT) plants displayed similar germination, biomass accumulation, reactive oxygen species (ROS) level, and physiological index. However, when treated with mannitol, the fresh weight, root length, water-holding ability, and V-ATPase, superoxide dismutase, and peroxidase activity of G2, G6, and G9 were significantly higher than those of WT. In contrast, the ROS and cell damage levels of the transgenic seedlings were lower than those of WT. Furthermore, the transcription levels of V-ATPase subunits, ABF, DREB, and NAC transcription factors (TFs), all of which are factors of ABA signaling pathway, were much higher in JrVHAG1 transgenic plants than those in WT. The positive induction of JrVHAG1 gene under abscisic acid (ABA) treatments in root and leaf tissues indicates that overexpression of JrVHAG1 improves plant tolerance to osmotic stress relating to the ABA signaling pathway, which is transcriptionally activated by ABF, DREB, and NAC TFs, and correlated to ROS scavenging and V-ATPase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdallah IB, Tlili N, Martinez-Force E, Rubio AG, Perez-Camino MC, Albouchi A, Boukhchina S (2015) Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem 173:972–978

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Cheng J, Chen L, Zhang G, Huang H, Zhang Y, Xu L (2016) Auxin-independent NAC pathway acts in response to explant-specific wounding and promotes root tip emergence during de novo root organogenesis in Arabidopsis. Plant Physiol 170:2136–2145

    Article  CAS  PubMed  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inze A, Ng S, Ivanova A, Rombaut D, van de Cotte B, Jaspers P, Van de Peer Y, Kangasjarvi J, Whelan J, Van Breusegem F (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25:3472–3490

    Article  PubMed  PubMed Central  Google Scholar 

  • de Paiva Rolla AA, de Fatima Correa Carvalho J, Fuganti-Pagliarini R, Engels C, do Rio A, Marin SR, de Oliveira MC, Beneventi MA, Marcelino-Guimaraes FC, Farias JR, Neumaier N, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL (2014) Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res 23:75–87

    Article  PubMed  Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Wang C, Liu D, Hu D, Fang M, You C, Yao Y, Hao Y (2013) MdVHA-A encodes an apple subunit A of vacuolar H+-ATPase and enhances drought tolerance in transgenic tobacco seedlings. J Plant Physiol 170:601–609

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    CAS  PubMed  Google Scholar 

  • Gao C, Wang Y, Jiang B, Liu G, Yu L, Wei Z, Yang C (2011) A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae. Mol Bio Rep 38:957–963

    Article  CAS  Google Scholar 

  • Gladman NP, Marshall RS, Lee KH, Vierstra RD (2016) The proteasome stress regulon is controlled by a pair of NAC transcription factors in Arabidopsis. Plant Cell 28(6):1279–1296

    Article  CAS  PubMed  Google Scholar 

  • Hanitzsch M, Schnitzer D, Seidel T, Golldack D, Dietz KJ (2007) Transcript level regulation of the vacuolar H(+)-ATPase subunit isoforms VHA-a, VHA-E and VHA-G in Arabidopsis thaliana. Mol Membr Biol 24:507–518

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Yamada H, Mitamura T, Horii T, Yamamoto A, Moriyama Y (2000) Vacuolar H(+)-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes. J Biol Chem 275:34353–34358

    Article  CAS  PubMed  Google Scholar 

  • Jing P, Zou J, Kong L, Hu S, Wang B, Yang J, Xie G (2016) OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice. Plant Sci 247:104–114

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  CAS  PubMed  Google Scholar 

  • Kluge C, Lamkemeyer P, Tavakoli N, Golldack D, Kandlbinder A, Dietz KJ (2003) cDNA cloning of 12 subunits of the V-type ATPase from Mesembryanthemum crystallinum and their expression under stress. Mol Membr Biol 20:171–183

    Article  CAS  PubMed  Google Scholar 

  • Krishnaswamy S, Verma S, Rahman MH, Kav NN (2011) Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol 75:107–127

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen X, Luo LQ, Yu J, Ming F (2013) Functions of ANAC092 involved in regulation of anther development in Arabidopsis thaliana. Yi Chuan 35:913–922

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhen Z, Guo K, Harvey P, Li J, Yang H (2016) MAPK-mediated enhanced expression of vacuolar H-ATPase confers the improved adaption to NaCl stress in a halotolerate peppermint (Mentha piperita L.). Protoplasma 253(2):553–569

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Sun-Wada GH, Yoshimizu T, Yamamoto A, Wada Y, Futai M (2002) Differential localization of the vacuolar H + pump with G subunit isoforms (G1 and G2) in mouse neurons. J Biol Chem 277:36296–36303

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, Ohmiya A (2016) The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci Rep 6:23609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shea C, Kryger M, Stender EG, Kragelund BB, Willemoes M, Skriver K (2015) Protein intrinsic disorder in Arabidopsis NAC transcription factors: transcriptional activation by ANAC013 and ANAC046 and their interactions with RCD1. Biochem J 465:281–294

    Article  PubMed  Google Scholar 

  • Rouquie D, Tournaire-Roux C, Szponarski W, Rossignol M, Doumas P (1998) Cloning of the V-ATPase subunit G in plant: functional expression and sub-cellular localization. FEBS Lett 437:287–292

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Kim YS, Han SH, Lee BD, Paek NC (2015) The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27:1771–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas-Munoz S, Rodriguez-Hernandez AA, Ortega-Amaro MA, Salazar-Badillo FB, Jimenez-Bremont JF (2016) Arabidopsis AtDjA3 null mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and post-germination stages. Front Plant Sci 7:220. doi:10.3389/fpls.2016.00220

    Article  PubMed  PubMed Central  Google Scholar 

  • Sazegari S, Niazi A, Ahmadi FS (2015) A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. Bioinformation 11:101–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma PD, Singh N, Ahuja PS, Reddy TV (2011) Abscisic acid response element binding factor 1 is required for establishment of Arabidopsis seedlings during winter. Mol Biol Rep 38:5147–5159

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal P, Gupta K, Agarwal PK (2015) Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. AoB Plants. doi:10.1093/aobpla/plv054

    PubMed  PubMed Central  Google Scholar 

  • Takasaki H, Maruyama K, Takahashi F, Fujita M, Yoshida T, Nakashima K, Myouga F, Toyooka K, Yamaguchi-Shinozaki K, Shinozaki K (2015) SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. Plant J 84:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Udawat P, Jha RK, Sinha D, Mishra A, Jha B (2016) Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) Mitigates salt and osmotic stress in transgenic tobacco plants. Front Plant Sci. doi:10.3389/fpls.2016.00518

    PubMed  PubMed Central  Google Scholar 

  • Wang L, He X, Zhao Y, Shen Y, Huang Z (2011) Wheat vacuolar H+-ATPase subunit B cloning and its involvement in salt tolerance. Planta 234:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhao X, Wang B, Liu E, Chen N, Zhang W, Liu H (2016) Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses. Biochem Biophys Res Commun 472:353–359

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Deng K, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y (2016) Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiol Biochem 104:17–28

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Deng G, Cheng S, Zhang W, Huang X, Li L, Cheng H, Rong X, Li J (2012) Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia. Molecules 17:7810–7823

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Kim S, do Hyeon Y, Kim D, Dong T, Park Y, Jin J, Joo S, Kim S, Hong J, Hwang D, Hwang I (2013) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25:4708–4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tissue Organ Cult (PCTOC) 117:99–112

    Article  CAS  Google Scholar 

  • Yang G, Wang C, Wang Y, Guo Y, Zhao Y, Yang C, Gao C (2016a) Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress. Sci Rep 6:srep18752

    Article  Google Scholar 

  • Yang G, Xu Z, Peng S, Sun Y, Jia C, Zhai M (2016b) In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Rep 35:681–692

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Zandkarimi H, Ebadi A, Salami SA, Alizade H, Baisakh N (2015) Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L.). PLoS One 10:e0134288

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Liu JS, Meng FN, Zhang ZZ, Long H, Lin WH, Luo XM, Wang ZY, Zhu SW (2016) ANAC005 is a membrane-associated transcription factor and regulates vascular development in Arabidopsis. J Integr Plant Biol 58:442–451

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Bu Y, Takano T, Zhang X, Liu S (2015) Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking. Plant Biotechnol J 28:12381

    Google Scholar 

  • Zhu Q, Zou J, Zhu M, Liu Z, Feng P, Fan G, Wang W, Liao H (2014) In silico analysis on structure and DNA binding mode of AtNAC1, a NAC transcription factor from Arabidopsis thaliana. J Mol Model 20:014–2117

    Google Scholar 

Download references

Acknowledgements

The current study was supported by the General Financial Grant from the China Postdoctoral Science Foundation (No.: 2016M590979), Science and Technology Project of Hunan Province (No.: 2016TP2007, 2016TP1014), and Agricultural Science and Technology Entrepreneurship and Research Program of Shaanxi Province (No.: 2015NY122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyan Yang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Communicated by I. Hwang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhao, Y., Ge, Y. et al. Characterization of a vacuolar H+-ATPase G subunit gene from Juglans regia (JrVHAG1) involved in mannitol-induced osmotic stress tolerance. Plant Cell Rep 36, 407–418 (2017). https://doi.org/10.1007/s00299-016-2090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2090-z

Keywords

Navigation