Skip to main content

Advertisement

Log in

Pivotal role of innate myeloid cells in cerebral post-ischemic sterile inflammation

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Inflammatory responses play a multifaceted role in regulating both disability and recovery after ischemic brain injury. In the acute phase of ischemic stroke, resident microglia elicit rapid inflammatory responses by the ischemic milieu. After disruption of the blood-brain barrier, peripheral-derived neutrophils and mononuclear phagocytes infiltrate into the ischemic brain. These infiltrating myeloid cells are activated by the endogenous alarming molecules released from dying brain cells. Inflammation after ischemic stroke thus typically consists of sterile inflammation triggered by innate immunity, which exacerbates the pathologies of ischemic stroke and worsens neurological prognosis. Infiltrating immune cells sustain the post-ischemic inflammation for several days; after this period, however, these cells take on a repairing function, phagocytosing inflammatory mediators and cellular debris. This time-specific polarization of immune cells in the ischemic brain is a potential novel therapeutic target. In this review, we summarize the current understanding of the phase-dependent role of innate myeloid cells in ischemic stroke and discuss the cellular and molecular mechanisms of their inflammatory or repairing polarization from a therapeutic perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lo EH (2010) Degeneration and repair in central nervous system disease. Nat Med 16(11):1205–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. He Z, Jin Y (2016) Intrinsic control of axon regeneration. Neuron 90(3):437–451

    Article  CAS  PubMed  Google Scholar 

  3. Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 18(12):753–769

    Article  CAS  PubMed  Google Scholar 

  4. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416

    Article  CAS  PubMed  Google Scholar 

  5. Kassebaum NJ et al (2016) Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1603–1658

    Article  Google Scholar 

  6. Mortality GBD, Causes of Death C (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544

    Article  Google Scholar 

  7. Hankey GJ (2017) Stroke. Lancet 389(10069):641–654

    Article  PubMed  Google Scholar 

  8. Fisher M, Saver JL (2015) Future directions of acute ischaemic stroke therapy. Lancet Neurol 14(7):758–767

    Article  PubMed  Google Scholar 

  9. Balami JS, Chen RL, Grunwald IQ, Buchan AM (2011) Neurological complications of acute ischaemic stroke. Lancet Neurol 10(4):357–371

    Article  PubMed  Google Scholar 

  10. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu Y, Liu Q, Anrather J, Shi FD (2015) Immune interventions in stroke. Nat Rev Neurol 11(9):524–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R (2012) The immunology of acute stroke. Nat Rev Neurol 8(7):401–410

    Article  CAS  PubMed  Google Scholar 

  13. Shichita T, Ito M, Yoshimura A (2014) Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 8:319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38(2):209–223

    Article  CAS  PubMed  Google Scholar 

  15. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  17. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  18. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kierdorf K et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280

    Article  CAS  PubMed  Google Scholar 

  20. Matcovitch-Natan O et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353(6301):aad8670

    Article  PubMed  CAS  Google Scholar 

  21. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  CAS  PubMed  Google Scholar 

  22. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543

    Article  CAS  PubMed  Google Scholar 

  23. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Du XF, Liu CS, Wen ZL, Du JL (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23(6):1189–1202

    Article  CAS  PubMed  Google Scholar 

  25. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109(4):E197–E205

    Article  CAS  PubMed  Google Scholar 

  26. Morrison HW, Filosa JA (2013) A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 10:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32(5):1208–1215

    Article  CAS  PubMed  Google Scholar 

  28. Szalay G et al (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55(6):604–616

    Article  PubMed  Google Scholar 

  30. Verma R, Cronin CG, Hudobenko J, Venna VR, McCullough LD, Liang BT (2017) Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun 66:302–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Webster CM, Hokari M, McManus A, Tang XN, Ma H, Kacimi R, Yenari MA (2013) Microglial P2Y12 deficiency/inhibition protects against brain ischemia. PLoS One 8(8):e70927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neumann J et al (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129(2):259–277

    Article  CAS  PubMed  Google Scholar 

  33. Maestrini I et al (2015) Higher neutrophil counts before thrombolysis for cerebral ischemia predict worse outcomes. Neurology 85(16):1408–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brait VH, Rivera J, Broughton BR, Lee S, Drummond GR, Sobey CG (2011) Chemokine-related gene expression in the brain following ischemic stroke: no role for CXCR2 in outcome. Brain Res 1372:169–179

    Article  CAS  PubMed  Google Scholar 

  35. Beray-Berthat V, Croci N, Plotkine M, Margaill I (2003) Polymorphonuclear neutrophils contribute to infarction and oxidative stress in the cortex but not in the striatum after ischemia-reperfusion in rats. Brain Res 987(1):32–38

    Article  CAS  PubMed  Google Scholar 

  36. Matsuo Y, Onodera H, Shiga Y, Nakamura M, Ninomiya M, Kihara T, Kogure K (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25(7):1469–1475

    Article  CAS  PubMed  Google Scholar 

  37. Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR (2015) Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice. Stroke 46(10):2916–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  PubMed  Google Scholar 

  39. Jorch SK, Kubes P (2017) An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 23(3):279–287

    Article  CAS  PubMed  Google Scholar 

  40. Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82(2):223–232

    Article  CAS  PubMed  Google Scholar 

  41. Harris AK, Ergul A, Kozak A, Machado LS, Johnson MH, Fagan SC (2005) Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke. BMC Neurosci 6:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, Corbi AL, Lizasoain I, Moro MA (2013) N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARgamma agonist rosiglitazone. Stroke 44(12):3498–3508

    Article  CAS  PubMed  Google Scholar 

  43. Schauer C et al (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 20(5):511–517

    Article  CAS  PubMed  Google Scholar 

  44. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14(6):392–404

    Article  CAS  PubMed  Google Scholar 

  45. Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692

    Article  CAS  PubMed  Google Scholar 

  46. Imai T et al (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91(4):521–530

    Article  CAS  PubMed  Google Scholar 

  47. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  PubMed  Google Scholar 

  48. Auffray C et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670

    Article  CAS  PubMed  Google Scholar 

  49. Mildner A et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553

    Article  CAS  PubMed  Google Scholar 

  50. Che X, Ye W, Panga L, Wu DC, Yang GY (2001) Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res 902(2):171–177

    Article  CAS  PubMed  Google Scholar 

  51. Passlick B, Flieger D, Ziegler-Heitbrock HW (1989) Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74(7):2527–2534

    CAS  PubMed  Google Scholar 

  52. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38(11):3000–3006

    Article  CAS  PubMed  Google Scholar 

  53. Al Ahmad A, Gassmann M, Ogunshola OO (2012) Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc Res 84(2):222–225

    Article  PubMed  CAS  Google Scholar 

  54. Kim JB et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26(24):6413–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28(5):927–938

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J et al (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42(5):1420–1428

    Article  CAS  PubMed  Google Scholar 

  57. Muhammad S et al (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28(46):12023–12031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shichita T et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950

    Article  CAS  PubMed  Google Scholar 

  59. Tang SC et al (2007) Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lehnardt S et al (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190(1–2):28–33

    Article  CAS  PubMed  Google Scholar 

  61. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115(12):1599–1608

    Article  CAS  PubMed  Google Scholar 

  62. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318):972–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller YI et al (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108(2):235–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Loser K et al (2010) The toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 16(6):713–717

    Article  CAS  PubMed  Google Scholar 

  65. Iyer SS et al (2013) Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39(2):311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Babelova A et al (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284(36):24035–24048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Riddell JR, Bshara W, Moser MT, Spernyak JA, Foster BA, Gollnick SO (2011) Peroxiredoxin 1 controls prostate cancer growth through toll-like receptor 4-dependent regulation of tumor vasculature. Cancer Res 71(5):1637–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu Y et al (2018) Peroxiredoxin 2 activates microglia by interacting with toll-like receptor 4 after subarachnoid hemorrhage. J Neuroinflammation 15(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  69. Klichko VI, Orr WC, Radyuk SN (2016) The role of peroxiredoxin 4 in inflammatory response and aging. Biochim Biophys Acta 1862(2):265–273

    Article  CAS  PubMed  Google Scholar 

  70. Rashidian J et al (2009) Essential role of cytoplasmic cdk5 and Prx2 in multiple ischemic injury models, in vivo. J Neurosci 29(40):12497–12505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Knoops B, Becker S, Poncin MA, Glibert J, Derclaye S, Clippe A, Alsteens D (2018) Specific interactions measured by AFM on living cells between peroxiredoxin-5 and TLR4: relevance for mechanisms of innate immunity. Cell Chem Biol 25(5):550–559 e553

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Walko TD 3rd, Bola RA, Hong JD, Au AK, Bell MJ, Kochanek PM, Clark RS, Aneja RK (2014) Cerebrospinal fluid mitochondrial DNA: a novel DAMP in pediatric traumatic brain injury. Shock 41(6):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hyakkoku K et al (2010) Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171(1):258–267

    Article  CAS  PubMed  Google Scholar 

  75. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wattananit S et al (2016) Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci 36(15):4182–4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li S et al (2010) An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 13(12):1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takatsuru Y, Eto K, Kaneko R, Masuda H, Shimokawa N, Koibuchi N, Nabekura J (2013) Critical role of the astrocyte for functional remodeling in contralateral hemisphere of somatosensory cortex after stroke. J Neurosci 33(11):4683–4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hiu T et al (2016) Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target. Brain 139(Pt 2):468–480

    Article  PubMed  Google Scholar 

  80. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    Article  CAS  PubMed  Google Scholar 

  82. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cherry JD, Olschowka JA, O'Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23(2):297–308

    Article  CAS  PubMed  Google Scholar 

  85. Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991

    Article  CAS  PubMed  Google Scholar 

  87. Duluc D et al (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110(13):4319–4330

    Article  CAS  PubMed  Google Scholar 

  88. Gleissner CA, Shaked I, Little KM, Ley K (2010) CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol 184(9):4810–4818

    Article  CAS  PubMed  Google Scholar 

  89. Kadl A et al (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107(6):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, Mason JC, Haskard DO (2012) Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res 110(1):20–33

    Article  CAS  PubMed  Google Scholar 

  91. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070

    Article  CAS  PubMed  Google Scholar 

  92. Kim CC, Nakamura MC, Hsieh CL (2016) Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation 13(1):117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S (2013) Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136(Pt 12):3578–3588

    Article  PubMed  Google Scholar 

  94. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu W, Fan Y, Frenzel T, Gasmi M, Bartus RT, Young WL, Yang GY, Chen Y (2008) Insulin growth factor-1 gene transfer enhances neurovascular remodeling and improves long-term stroke outcome in mice. Stroke 39(4):1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu W et al (2009) Postischemic IGF-1 gene transfer promotes neurovascular regeneration after experimental stroke. J Cereb Blood Flow Metab 29(9):1528–1537

    Article  CAS  PubMed  Google Scholar 

  97. Gliem M, Schwaninger M, Jander S (2016) Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta 1862(3):329–338

    Article  CAS  PubMed  Google Scholar 

  98. Garcia-Bonilla L, Faraco G, Moore J, Murphy M, Racchumi G, Srinivasan J, Brea D, Iadecola C, Anrather J (2016) Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. J Neuroinflammation 13(1):285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, Jander S (2012) Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 71(6):743–752

    Article  CAS  PubMed  Google Scholar 

  100. Shichita T et al (2017) MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat Med 23(6):723–732

    Article  CAS  PubMed  Google Scholar 

  101. Ridder DA, Schwaninger M (2009) NF-kappaB signaling in cerebral ischemia. Neuroscience 158(3):995–1006

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell 168(1–2):37–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, Bonini MG, Mason RP, Oh U, Block ML (2015) Redox regulation of NF-kappaB p50 and M1 polarization in microglia. Glia 63(3):423–440

    Article  PubMed  Google Scholar 

  104. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5(5):554–559

    Article  CAS  PubMed  Google Scholar 

  105. Herrmann O et al (2005) IKK mediates ischemia-induced neuronal death. Nat Med 11(12):1322–1329

    Article  CAS  PubMed  Google Scholar 

  106. Shichita T et al (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18(6):911–917

    Article  CAS  PubMed  Google Scholar 

  107. Tsai SY, Segovia JA, Chang TH, Morris IR, Berton MT, Tessier PA, Tardif MR, Cesaro A, Bose S (2014) DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza a virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog 10(1):e1003848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27(3):1176–1190

    Article  CAS  PubMed  Google Scholar 

  109. Wang X, Yue TL, Barone FC, White RF, Gagnon RC, Feuerstein GZ (1994) Concomitant cortical expression of TNF-alpha and IL-1 beta mRNAs follows early response gene expression in transient focal ischemia. Mol Chem Neuropathol 23(2–3):103–114

    Article  CAS  PubMed  Google Scholar 

  110. Lambertsen KL et al (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29(5):1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu X et al (2016) Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 47(2):498–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J (2015) Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 35(32):11281–11291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Esposito E, Hayakawa K, Ahn BJ, Chan SJ, Xing C, Liang AC, Kim KW, Arai K, Lo EH (2018) Effects of ischemic post-conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia. J Neurochem

  114. Lim JE, Chung E, Son Y (2017) A neuropeptide, substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNgamma. Sci Rep 7(1):9417

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yang Y et al (2017) ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J Neurosci 37(18):4692–4704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shin JA, Lim SM, Jeong SI, Kang JL, Park EM (2014) Noggin improves ischemic brain tissue repair and promotes alternative activation of microglia in mice. Brain Behav Immun 40:143–154

    Article  CAS  PubMed  Google Scholar 

  117. Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10(3):235–241

    Article  CAS  PubMed  Google Scholar 

  118. Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, Rechavi G, Schwartz M (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5(8):e171

    Article  PubMed  PubMed Central  Google Scholar 

  119. Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K (2014) Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci 11(4):344–348

    Article  PubMed  PubMed Central  Google Scholar 

  120. He J, Baum LG (2006) Galectin interactions with extracellular matrix and effects on cellular function. Methods Enzymol 417:247–256

    Article  CAS  PubMed  Google Scholar 

  121. Starossom SC et al (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37(2):249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lalancette-Hebert M, Swarup V, Beaulieu JM, Bohacek I, Abdelhamid E, Weng YC, Sato S, Kriz J (2012) Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci 32(30):10383–10395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Getts DR et al (2014) Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 6(219):219ra217

    Article  CAS  Google Scholar 

  124. Yang J et al (2018) RIPK3/MLKL-mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex. Cereb Cortex

  125. Bosurgi L et al (2017) Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356(6342):1072–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26(50):12904–12913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Boven LA et al (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129(Pt 2):517–526

    Article  PubMed  Google Scholar 

  128. Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83(5):1098–1116

    Article  CAS  PubMed  Google Scholar 

  129. Khan MA, Schultz S, Othman A, Fleming T, Lebron-Galan R, Rades D, Clemente D, Nawroth PP, Schwaninger M (2016) Hyperglycemia in stroke impairs polarization of monocytes/macrophages to a protective noninflammatory cell type. J Neurosci 36(36):9313–9325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Oh DY et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Oishi Y et al (2017) SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metab 25(2):412–427

    Article  CAS  PubMed  Google Scholar 

  132. Bruce KD, Gorkhali S, Given K, Coates AM, Boyle KE, Macklin WB, Eckel RH (2018) Lipoprotein lipase is a feature of alternatively-activated microglia and may facilitate lipid uptake in the CNS during demyelination. Front Mol Neurosci 11:57

    Article  PubMed  PubMed Central  Google Scholar 

  133. Qin C, Fan WH, Liu Q, Shang K, Murugan M, Wu LJ, Wang W, Tian DS (2017) Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke 48(12):3336–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Suzuki M, Suzuki M, Sato K, Dohi S, Sato T, Matsuura A, Hiraide A (2001) Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 87(2):143–150

    Article  CAS  PubMed  Google Scholar 

  135. Rahman M et al (2014) The beta-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun 5:3944

    Article  CAS  PubMed  Google Scholar 

  136. Taniguchi H et al (2007) Prostaglandin D2 protects neonatal mouse brain from hypoxic ischemic injury. J Neurosci 27(16):4303–4312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Villarino AV, Kanno Y, O'Shea JJ (2017) Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 18(4):374–384

    Article  CAS  PubMed  Google Scholar 

  138. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7(6):454–465

    Article  CAS  PubMed  Google Scholar 

  139. Przanowski P et al (2014) The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. J Mol Med (Berl) 92(3):239–254

    Article  CAS  Google Scholar 

  140. Qin H et al (2012) Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc Natl Acad Sci U S A 109(13):5004–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Koscso B, Csoka B, Kokai E, Nemeth ZH, Pacher P, Virag L, Leibovich SJ, Hasko G (2013) Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. J Leukoc Biol 94(6):1309–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761

    Article  CAS  PubMed  Google Scholar 

  143. Czimmerer Z et al (2018) The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity 48(1):75–90 e76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Xie C et al (2016) Effects of IRF1 and IFN-beta interaction on the M1 polarization of macrophages and its antitumor function. Int J Mol Med 38(1):148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Iadecola C, Salkowski CA, Zhang F, Aber T, Nagayama M, Vogel SN, Ross ME (1999) The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury. J Exp Med 189(4):719–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cuesta N, Nhu QM, Zudaire E, Polumuri S, Cuttitta F, Vogel SN (2007) IFN regulatory factor-2 regulates macrophage apoptosis through a STAT1/3- and caspase-1-dependent mechanism. J Immunol 178(6):3602–3611

    Article  CAS  PubMed  Google Scholar 

  147. Cruz SA, Hari A, Qin Z, Couture P, Huang H, Lagace DC, Stewart AFR, Chen HH (2017) Loss of IRF2BP2 in microglia increases inflammation and functional deficits after focal ischemic brain injury. Front Cell Neurosci 11:201

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300(5622):1148–1151

    Article  CAS  PubMed  Google Scholar 

  149. Lin R, Heylbroeck C, Pitha PM, Hiscott J (1998) Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18(5):2986–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA (2009) GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol 86(2):411–421

    Article  CAS  PubMed  Google Scholar 

  151. Biswas SK et al (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122

    Article  CAS  PubMed  Google Scholar 

  152. Tarassishin L, Suh HS, Lee SC (2011) Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation 8:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vartanian KB, Stevens SL, Marsh BJ, Williams-Karnesky R, Lessov NS, Stenzel-Poore MP (2011) LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury. J Neuroinflammation 8:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP (2009) Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29(31):9839–9849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Satoh T et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944

    Article  CAS  PubMed  Google Scholar 

  156. Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45(4):817–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. El Chartouni C, Schwarzfischer L, Rehli M (2010) Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming. Immunobiology 215(9–10):821–825

    Article  PubMed  CAS  Google Scholar 

  158. Eguchi J, Kong X, Tenta M, Wang X, Kang S, Rosen ED (2013) Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 62(10):3394–3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Guo S et al (2014) IRF4 is a novel mediator for neuronal survival in ischaemic stroke. Cell Death Differ 21(6):888–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Al Mamun A, Chauhan A, Yu H, Xu Y, Sharmeen R, Liu F (2018) Interferon regulatory factor 4/5 signaling impacts on microglial activation after ischemic stroke in mice. Eur J Neurosci 47(2):140–149

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zhao SC, Wang C, Xu H, Wu WQ, Chu ZH, Ma LS, Zhang YD, Liu F (2017) Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. Acta Pharmacol Sin 38(11):1425–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gelderblom M et al (2018) IL-23 (interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 49(1):155–164

    Article  CAS  PubMed  Google Scholar 

  163. Takaoka A et al (2005) Integral role of IRF-5 in the gene induction programme activated by toll-like receptors. Nature 434(7030):243–249

    Article  CAS  PubMed  Google Scholar 

  164. Negishi H et al (2006) Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in toll-like receptor-dependent gene induction program. Proc Natl Acad Sci U S A 103(41):15136–15141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lacey DC et al (2012) Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J Immunol 188(11):5752–5765

    Article  CAS  PubMed  Google Scholar 

  166. Tanaka T, Murakami K, Bando Y, Yoshida S (2015) Interferon regulatory factor 7 participates in the M1-like microglial polarization switch. Glia 63(4):595–610

    Article  PubMed  Google Scholar 

  167. Xu H et al (2012) Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 13(7):642–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Minten C, Terry R, Deffrasnes C, King NJ, Campbell IL (2012) IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 7(11):e49851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, Inoue K (2012) IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep 1(4):334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Laricchia-Robbio L, Tamura T, Karpova T, Sprague BL, McNally JG, Ozato K (2005) Partner-regulated interaction of IFN regulatory factor 8 with chromatin visualized in live macrophages. Proc Natl Acad Sci U S A 102(40):14368–14373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, Itoh T (2012) Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflammation 9:227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Xiang M et al (2014) Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. J Neurochem 129(6):988–1001

    Article  CAS  PubMed  Google Scholar 

  173. Roszer T, Menendez-Gutierrez MP, Cedenilla M, Ricote M (2013) Retinoid X receptors in macrophage biology. Trends Endocrinol Metab 24(9):460–468

    Article  CAS  PubMed  Google Scholar 

  174. Hamada M et al (2014) MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nat Commun 5:3147

    Article  PubMed  CAS  Google Scholar 

  175. Han L, Cai W, Mao L, Liu J, Li P, Leak RK, Xu Y, Hu X, Chen J (2015) Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke 46(9):2628–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Luo Y, Yin W, Signore AP, Zhang F, Hong Z, Wang S, Graham SH, Chen J (2006) Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 97(2):435–448

    Article  CAS  PubMed  Google Scholar 

  177. Wen L, You WD, Wang H, Meng Y, Feng JF, Yang X (2018) Polarization of microglia to the M2 phenotype in a PPAR-gamma dependent manner attenuates axonal injury induced by traumatic brain injury in mice. J Neurotrauma

  178. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70

    Article  CAS  PubMed  Google Scholar 

  179. Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M (2016) MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 91:151–165

    Article  CAS  PubMed  Google Scholar 

  180. Hamzei Taj S, Kho W, Aswendt M, Collmann FM, Green C, Adamczak J, Tennstaedt A, Hoehn M (2016) Dynamic modulation of microglia/macrophage polarization by miR-124 after focal cerebral ischemia. J NeuroImmune Pharmacol 11(4):733–748

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, Cheng J, Jia J, Zhen X (2015) MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 49:75–85

    Article  CAS  PubMed  Google Scholar 

  182. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T (2011) The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 286(3):1786–1794

    Article  CAS  PubMed  Google Scholar 

  183. Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, Bragin D, Yang Y, Erhardt EB, Roitbak T (2015) In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 35(36):12446–12464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, Wang R, Feng J, Luo Y (2017) Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke 48(8):2211–2221

    Article  CAS  PubMed  Google Scholar 

  185. Ivashkiv LB (2013) Epigenetic regulation of macrophage polarization and function. Trends Immunol 34(5):216–223

    Article  CAS  PubMed  Google Scholar 

  186. Patnala R, Arumugam TV, Gupta N, Dheen ST (2017) HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Mol Neurobiol 54(8):6391–6411

    Article  CAS  PubMed  Google Scholar 

  187. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321(3):892–901

    Article  CAS  PubMed  Google Scholar 

  188. Demyanenko S, Neginskaya M, Berezhnaya E (2017) Expression of class I histone deacetylases in ipsilateral and contralateral hemispheres after the focal photothrombotic infarction in the mouse brain. Transl Stroke Res

  189. Cho SH et al (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1beta. J Neurosci 35(2):807–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Hernandez-Jimenez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I, Moro MA (2013) Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44(8):2333–2337

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by AMED under grant no. JP18gm5910023 and JP18ek0210100, MEXT Grant-in-Aid for Young Scientists (A) (JP17H05096), Grant-in-Aid for Challenging Exploratory Research (JP17K19571), Grant-in-Aid for Scientific Research on Innovative Areas (JP17H05514), The Naito Foundation, SENSHIN Medical Research Foundation, MSD Life Science Foundation, The Ichiro Kanehara Foundation, Kishimoto Foundation Research Grant, The Tokyo Biochemical Research Foundation (T.S.), and MEXT Grant-in-Aid for Young Scientists (B) (JP17K15204) (J.T.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shichita.

Additional information

This article is a contribution to the special issue on Professional and Nonprofessional Phagocytes and Diseases - Guest Editor: Toru Miyazaki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuyama, J., Nakamura, A., Ooboshi, H. et al. Pivotal role of innate myeloid cells in cerebral post-ischemic sterile inflammation. Semin Immunopathol 40, 523–538 (2018). https://doi.org/10.1007/s00281-018-0707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-018-0707-8

Keywords

Navigation