Skip to main content

Advertisement

Log in

Pathogenesis of Behçet’s disease: autoinflammatory features and beyond

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Behçet’s disease (BD) is an inflammatory disorder of unknown aetiology characterised by recurrent attacks affecting the mucocutaneous tissues, eyes, joints, blood vessels, brain and gastrointestinal tract. It is a multifactorial disease classified as a variable vessel vasculitis, and several environmental triggers may induce inflammatory episodes in genetically susceptible individuals. BD has several autoinflammatory features including recurrent self-limited clinical manifestations overlapping with monogenic autoinflammatory disorders, significant host predisposition and abnormally increased inflammatory response, with a robust innate component. Human leukocyte antigen (HLA)-B*51 is the strongest susceptibility factor described so far affecting the disease risk and typical phenotype. Non-HLA genetic associations such as endoplasmic reticulum aminopeptidase 1 (ERAP1), interleukin 23 receptor (IL23R) and IL10 variations suggest that BD shares susceptibility genes and inflammatory pathways with spondyloarthritis. Although genomewide association studies revealed an increased risk associated with recessively inherited ERAP1 variations in HLA-B*51 positive patients, it is not clear yet whether certain peptide-HLA allele combinations result in an adaptive response by a self-antigen-directed cytotoxic response or an innate response by modulating an NK cell activity or causing an unfolded protein response. Understanding of major histocompatibility complex (MHC) Class I-driven inflammatory response is expected to provide insights for the development of better treatment and remission-induction options in BD as well as in ankylosing spondylitis (AS) and psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Behcet H, Matteson EL (2010) On relapsing, aphthous ulcers of the mouth, eye and genitalia caused by a virus. 1937. Clin Exp Rheumatol 28(4 Suppl 60):S2–S5

    PubMed  Google Scholar 

  2. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F et al (2013) 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 65(1):1–11

    Article  CAS  PubMed  Google Scholar 

  3. Gul A (2005) Behçet’s disease as an autoinflammatory disorder. Curr Drug Targets Inflamm Allergy 4(1):81–83

    Article  PubMed  Google Scholar 

  4. McGonagle D, McDermott MF (2006) A proposed classification of the immunological diseases. PLoS Med 3(8), e297

    Article  PubMed Central  PubMed  Google Scholar 

  5. Yazici H, Fresko I (2005) Behçet’s disease and other autoinflammatory conditions: what’s in a name? Clin Exp Rheumatol 23(4 Suppl 38):S1–S2

    PubMed  Google Scholar 

  6. Gul A (2011) Genome-wide association studies in Behçet’s disease: expectations and promises. Clin Exp Rheumatol 29(4 Suppl 67):S3–S5

    PubMed  Google Scholar 

  7. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97(1):133–144

    Article  CAS  PubMed  Google Scholar 

  8. Kastner DL, Aksentijevich I, Goldbach-Mansky R (2010) Autoinflammatory disease reloaded: a clinical perspective. Cell 140(6):784–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ridker PM, Thuren T, Zalewski A, Libby P (2011) Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 162(4):597–605

    Article  CAS  PubMed  Google Scholar 

  10. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32(9):1663–1668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R et al (2013) Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381(9881):1905–1915

    Article  CAS  PubMed  Google Scholar 

  12. Jesus AA, Goldbach-Mansky R (2014) IL-1 blockade in autoinflammatory syndromes. Annu Rev Med 65:223–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kone-Paut I, Sanchez E, Le Quellec A, Manna R, Touitou I (2007) Autoinflammatory gene mutations in Behçet’s disease. Ann Rheum Dis 66(6):832–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yazisiz V (2014) Similarities and differences between Behçet’s disease and Crohn’s disease. World J Gastrointest Pathophysiol 5(3):228–238

    PubMed Central  PubMed  Google Scholar 

  15. Masters SL, Simon A, Aksentijevich I, Kastner DL (2009) Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol 27:621–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gul A, Inanc M, Ocal L, Aral O, Konice M (2000) Familial aggregation of Behçet’s disease in Turkey. Ann Rheum Dis 59(8):622–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. de Menthon M, Lavalley MP, Maldini C, Guillevin L, Mahr A (2009) HLA-B51/B5 and the risk of Behçet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum 61(10):1287–1296

    Article  PubMed  Google Scholar 

  18. Gul A, Ohno S (2012) HLA-B*51 and Behçet’s disease. Ocular Immunol Inflamm 20(1):37–43

    Article  CAS  Google Scholar 

  19. Gul A, Uyar FA, Inanc M, Ocal L, Tugal-Tutkun I, Aral O et al (2001) Lack of association of HLA-B*51 with a severe disease course in Behçet’s disease. Rheumatology 40(6):668–672

    Article  CAS  PubMed  Google Scholar 

  20. Maldini C, Lavalley MP, Cheminant M, de Menthon M, Mahr A (2012) Relationships of HLA-B51 or B5 genotype with Behçet’s disease clinical characteristics: systematic review and meta-analyses of observational studies. Rheumatology 51(5):887–900

    Article  PubMed  Google Scholar 

  21. Remmers EF, Cosan F, Kirino Y, Ombrello MJ, Abaci N, Satorius C et al (2010) Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet 42(8):698–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mizuki N, Meguro A, Ota M, Ohno S, Shiota T, Kawagoe T et al (2010) Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat Genet 42(8):703–706

    Article  CAS  PubMed  Google Scholar 

  23. Gul A (2014) Genetics of Behçet’s disease: lessons learned from genomewide association studies. Curr Opin Rheumatol 26(1):56–63

    Article  PubMed  Google Scholar 

  24. Hughes T, Coit P, Adler A, Yilmaz V, Aksu K, Duzgun N et al (2013) Identification of multiple independent susceptibility loci in the HLA region in Behçet’s disease. Nat Genet 45(3):319–324

    Article  CAS  PubMed  Google Scholar 

  25. Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E et al (2013) Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet 45(2):202–207

    Article  CAS  PubMed  Google Scholar 

  26. Ombrello MJ, Kirino Y, de Bakker PI, Gul A, Kastner DL, Remmers EF (2014) Behçet’s disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 111(24):8867–8872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zervoudi E, Saridakis E, Birtley JR, Seregin SS, Reeves E, Kokkala P et al (2013) Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc Natl Acad Sci U S A 110(49):19890–19895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Dilsen N, Konice M, Aral O, Ocal L, Inanc M, Gul A (1993) Comparative study of the skin pathergy test with blunt and sharp needles in Behçet’s disease: confirmed specificity but decreased sensitivity with sharp needles. Ann Rheum Dis 52(11):823–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gul A, Esin S, Dilsen N, Konice M, Wigzell H, Biberfeld P (1995) Immunohistology of skin pathergy reaction in Behçet’s disease. Br J Dermatol 132(6):901–907

    Article  CAS  PubMed  Google Scholar 

  30. Criteria for diagnosis of Behçet’s disease. International Study Group for Behçet’s Disease. Lancet. 1990;335(8697):1078–80.

  31. Cakir N, Yazici H, Chamberlain MA, Barnes CG, Yurdakul S, Atasoy S et al (1991) Response to intradermal injection of monosodium urate crystals in Behçet’s syndrome. Ann Rheum Dis 50(9):634–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mege JL, Dilsen N, Sanguedolce V, Gul A, Bongrand P, Roux H et al (1993) Overproduction of monocyte derived tumor necrosis factor alpha, interleukin (IL) 6, IL-8 and increased neutrophil superoxide generation in Behçet’s disease: a comparative study with familial Mediterranean fever and healthy subjects. J Rheumatol 20(9):1544–1549

    CAS  PubMed  Google Scholar 

  33. Gul A (2001) Behçet’s disease: an update on the pathogenesis. Clin Exp Rheumatol 19(5 Suppl 24):S6–S12

    CAS  PubMed  Google Scholar 

  34. Alavi A, Sajic D, Cerci FB, Ghazarian D, Rosenbach M, Jorizzo J (2014) Neutrophilic dermatoses: an update. Am J Clin Dermatol 15(5):413–423

    Article  PubMed  Google Scholar 

  35. Kirino Y, Zhou Q, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E et al (2013) Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behçet’s disease. Proc Natl Acad Sci U S A 110(20):8134–8139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sfikakis PP, Markomichelakis N, Alpsoy E, Assaad-Khalil S, Bodaghi B, Gul A et al (2007) Anti-TNF therapy in the management of Behçet’s disease—review and basis for recommendations. Rheumatology 46(5):736–741

    Article  CAS  PubMed  Google Scholar 

  37. Arida A, Sfikakis PP (2014) Anti-cytokine biologic treatment beyond anti-TNF in Behçet’s disease. Clin Exp Rheumatol 32(4 Suppl 84):S149–S155

    PubMed  Google Scholar 

  38. Gul A, Tugal-Tutkun I, Dinarello CA, Reznikov L, Esen BA, Mirza A et al (2012) Interleukin-1β-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behçet’s disease: an open-label pilot study. Ann Rheum Dis 71(4):563–566

    Article  CAS  PubMed  Google Scholar 

  39. Cantarini L, Lopalco G, Caso F, Costa L, Iannone F, Lapadula G et al (2015) Effectiveness and tuberculosis-related safety profile of interleukin-1 blocking agents in the management of Behçet’s disease. Autoimmun Rev 14(1):1–9

    Article  CAS  PubMed  Google Scholar 

  40. Addimanda O, Pipitone N, Pazzola G, Salvarani C (2015) Tocilizumab for severe refractory neuro-Behçet: three cases IL-6 blockade in neuro-Behçet. Semin Arthritis Rheum 44(4):472–475

    Article  CAS  PubMed  Google Scholar 

  41. Calvo-Rio V, de la Hera D, Beltran-Catalan E, Blanco R, Hernandez M, Martinez-Costa L et al (2014) Tocilizumab in uveitis refractory to other biologic drugs: a study of 3 cases and a literature review. Clin Exp Rheumatol 32(4 Suppl 84):S54–S57

    PubMed  Google Scholar 

  42. Diamantopoulos AP, Hatemi G (2013) Lack of efficacy of tocilizumab in mucocutaneous Behçet’s syndrome: report of two cases. Rheumatology 52(10):1923–1924

    Article  PubMed  Google Scholar 

  43. Cantarini L, Lopalco G, Vitale A, Coladonato L, Rigante D, Lucherini OM, et al. Paradoxical mucocutaneous flare in a case of Behçet’s disease treated with tocilizumab. Clin Rheumatol. 2014

  44. Esin S, Gul A, Hodara V, Jeddi-Tehrani M, Dilsen N, Konice M et al (1997) Peripheral blood T cell expansions in patients with Behçet’s disease. Clin Exp Immunol 107(3):520–527

    Article  CAS  PubMed  Google Scholar 

  45. Li B, Yang P, Zhou H, Zhang Z, Xie C, Lin X et al (2003) T-bet expression is upregulated in active Behçet’s disease. Br J Ophthalmol 87(10):1264–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nagafuchi H, Takeno M, Yoshikawa H, Kurokawa MS, Nara K, Takada E et al (2005) Excessive expression of Txk, a member of the Tec family of tyrosine kinases, contributes to excessive Th1 cytokine production by T lymphocytes in patients with Behçet’s disease. Clin Exp Immunol 139(2):363–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Na SY, Park MJ, Park S, Lee ES (2013) Up-regulation of Th17 and related cytokines in Behçet’s disease corresponding to disease activity. Clin Exp Rheumatol 31(3 Suppl 77):32–40

    PubMed  Google Scholar 

  48. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4−CD8− entheseal resident T cells. Nat Med 18(7):1069–1076

    Article  CAS  PubMed  Google Scholar 

  49. Mease PJ (2015) Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr Opin Rheumatol 27(2):127–133

    Article  CAS  PubMed  Google Scholar 

  50. Dick AD, Tugal-Tutkun I, Foster S, Zierhut M, Melissa Liew SH, Bezlyak V et al (2013) Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology 120(4):777–787

    Article  PubMed  Google Scholar 

  51. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD et al (2012) Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61(12):1693–1700

    Article  CAS  PubMed  Google Scholar 

  52. Lockwood CM, Hale G, Waldman H, Jayne DR (2003) Remission induction in Behçet’s disease following lymphocyte depletion by the anti-CD52 antibody CAMPATH 1-H. Rheumatology 42(12):1539–1544

    Article  CAS  PubMed  Google Scholar 

  53. Davatchi F, Shams H, Rezaipoor M, Sadeghi-Abdollahi B, Shahram F, Nadji A et al (2010) Rituximab in intractable ocular lesions of Behçet’s disease; randomized single-blind control study (pilot study). Int J Rheum Dis 13(3):246–252

    Article  PubMed  Google Scholar 

  54. Hatemi G, Melikoglu M, Tunc R, Korkmaz C, Turgut Ozturk B, Mat C et al (2015) Apremilast for Behçet’s syndrome—a phase 2, placebo-controlled study. N Engl J Med 372(16):1510–1518

    Article  CAS  PubMed  Google Scholar 

  55. Schafer PH, Parton A, Gandhi AK, Capone L, Adams M, Wu L et al (2010) Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br J Pharmacol 159(4):842–855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Gül.

Additional information

This article is a contribution to the Special Issue on The Inflammasome and Autoinflammatory Diseases - Guest Editors: Seth L. Masters, Tilmann Kallinich and Seza Ozen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gül, A. Pathogenesis of Behçet’s disease: autoinflammatory features and beyond. Semin Immunopathol 37, 413–418 (2015). https://doi.org/10.1007/s00281-015-0502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0502-8

Keywords

Navigation