Skip to main content
Log in

Mechanistic population pharmacokinetics of total and unbound paclitaxel for a new nanodroplet formulation versus Taxol in cancer patients

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Our objectives were (1) to compare the disposition and in vivo release of paclitaxel between a tocopherol-based Cremophor-free formulation (Tocosol Paclitaxel®) and Cremophor® EL-formulated paclitaxel (Taxol®) in human subjects, and (2) to develop a mechanistic model for unbound and total paclitaxel pharmacokinetics.

Methods

A total of 35 patients (average ± SD age: 59 ±13 years) with advanced non-hematological malignancies were studied in a randomized two-way crossover trial. Patients received 175 mg/m2 paclitaxel as 15 min (Tocosol Paclitaxel) or 3 h (Taxol) intravenous infusion in each study period. Paclitaxel concentrations were determined by LC–MS/MS in plasma ultrafiltrate and whole blood. NONMEM VI was used for population pharmacokinetics.

Results

A linear disposition model with three compartments for unbound paclitaxel and a one-compartment model for Cremophor were applied. Total clearance of unbound paclitaxel was 845 L/h (variability: 25% CV). The prolonged release with Tocosol Paclitaxel was explained by the limited solubility of unbound paclitaxel of 405 ng/mL (estimated) in plasma. The 15 min Tocosol Paclitaxel infusion yielded a mean time to 90% cumulative input of 1.14 ± 0.16 h. Tocosol Paclitaxel was estimated to release 9.8% of the dose directly into the deep peripheral compartment. The model accounted for the presence of drug-containing nanodroplets in blood.

Conclusions

Population pharmacokinetic analysis indicated linear disposition and a potentially higher bioavailability of unbound paclitaxel following Tocosol Paclitaxel administration due to direct release at the target site. The prolonged release of Tocosol Paclitaxel supports 15 min paclitaxel infusions. This mechanistic model may be important for development of prolonged release formulations that distribute in and from the systemic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beal SL, Sheiner LB, Boeckmann AJ (2006) NONMEM Users Guides (1989–2006). Icon Development Solutions, Ellicott City

    Google Scholar 

  2. Brat DJ, Windebank AJ, Brimijoin S (1992) Emulsifier for intravenous cyclosporin inhibits neurite outgrowth, causes deficits in rapid axonal transport and leads to structural abnormalities in differentiating N1E.115 neuroblastoma. J Pharmacol Exp Ther 261:803–810

    PubMed  CAS  Google Scholar 

  3. Brouwer E, Verweij J, De Bruijn P, Loos WJ, Pillay M, Buijs D, Sparreboom A (2000) Measurement of fraction unbound paclitaxel in human plasma. Drug Metab Dispos 28:1141–1145

    PubMed  CAS  Google Scholar 

  4. Brown T, Havlin K, Weiss G, Cagnola J, Koeller J, Kuhn J, Rizzo J, Craig J, Phillips J, Von Hoff D (1991) A phase I trial of taxol given by a 6-hour intravenous infusion. J Clin Oncol 9:1261–1267

    PubMed  CAS  Google Scholar 

  5. Constantinides PP, Lambert KJ, Tustian AK, Schneider B, Lalji S, Ma W, Wentzel B, Kessler D, Worah D, Quay SC (2000) Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel. Pharm Res 17:175–182

    Article  PubMed  CAS  Google Scholar 

  6. Constantinides PP, Tustian A, Kessler DR (2004) Tocol emulsions for drug solubilization and parenteral delivery. Adv Drug Deliv Rev 56:1243–1255

    Article  PubMed  CAS  Google Scholar 

  7. Dhanikula AB, Panchagnula R, Singh I, Kaur KJ, Kaul CL, Sekhon JS (2001) Pharmacokinetic study of paclitaxel as a 3-hour infusion in an Indian population: 135 mg/m2 vs. 175 mg/m2. Methods Find Exp Clin Pharmacol 23:93–98

    Article  PubMed  CAS  Google Scholar 

  8. Dorr RT (1994) Pharmacology and toxicology of Cremophor EL diluent. Ann Pharmacother 28:S11–S14

    PubMed  CAS  Google Scholar 

  9. Gelderblom H, Mross K, ten Tije AJ, Behringer D, Mielke S, van Zomeren DM, Verweij J, Sparreboom A (2002) Comparative pharmacokinetics of unbound paclitaxel during 1- and 3-hour infusions. J Clin Oncol 20:574–581

    Article  PubMed  CAS  Google Scholar 

  10. Gelderblom H, Verweij J, Brouwer E, Pillay M, de Bruijn P, Nooter K, Stoter G, Sparreboom A (1999) Disposition of [G-(3)H]paclitaxel and cremophor EL in a patient with severely impaired renal function. Drug Metab Dispos 27:1300–1305

    PubMed  CAS  Google Scholar 

  11. Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Lacatelli A, Bonadonna G, Egorin MJ (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190

    PubMed  CAS  Google Scholar 

  12. Hamada H, Ishihara K, Masuoka N, Mikuni K, Nakajima N (2006) Enhancement of water-solubility and bioactivity of paclitaxel using modified cyclodextrins. J Biosci Bioeng 102:369–371

    Article  PubMed  CAS  Google Scholar 

  13. Hempel G, Rube C, Mosler C, Wienstroer M, Wagner-Bohn A, Schuck A, Willich N, Boos J (2003) Population pharmacokinetics of low-dose paclitaxel in patients with brain tumors. Anticancer Drugs 14:417–422

    Article  PubMed  CAS  Google Scholar 

  14. Henningsson A, Karlsson MO, Vigano L, Gianni L, Verweij J, Sparreboom A (2001) Mechanism-based pharmacokinetic model for paclitaxel. J Clin Oncol 19:4065–4073

    PubMed  CAS  Google Scholar 

  15. Henningsson A, Marsh S, Loos WJ, Karlsson MO, Garsa A, Mross K, Mielke S, Vigano L, Locatelli A, Verweij J, Sparreboom A, McLeod HL (2005) Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 11:8097–8104

    Article  PubMed  CAS  Google Scholar 

  16. Henningsson A, Sparreboom A, Sandstrom M, Freijs A, Larsson R, Bergh J, Nygren P, Karlsson MO (2003) Population pharmacokinetic modelling of unbound and total plasma concentrations of paclitaxel in cancer patients. Eur J Cancer 39:1105–1114

    Article  PubMed  CAS  Google Scholar 

  17. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8:1038–1044

    PubMed  CAS  Google Scholar 

  18. Joerger M, Huitema AD, van den Bongard DH, Schellens JH, Beijnen JH (2006) Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of Paclitaxel in patients with solid tumors. Clin Cancer Res 12:2150–2157

    Article  PubMed  CAS  Google Scholar 

  19. Karlsson MO, Molnar V, Freijs A, Nygren P, Bergh J, Larsson R (1999) Pharmacokinetic models for the saturable distribution of paclitaxel. Drug Metab Dispos 27:1220–1223

    PubMed  CAS  Google Scholar 

  20. Kearns CM, Gianni L, Egorin MJ (1995) Paclitaxel pharmacokinetics and pharmacodynamics. Semin Oncol 22:16–23

    PubMed  CAS  Google Scholar 

  21. Kessel D (1992) Properties of cremophor EL micelles probed by fluorescence. Photochem Photobiol 56:447–451

    Article  PubMed  CAS  Google Scholar 

  22. Kumar GN, Walle UK, Bhalla KN, Walle T (1993) Binding of taxol to human plasma, albumin and alpha 1-acid glycoprotein. Res Commun Chem Pathol Pharmacol 80:337–344

    PubMed  CAS  Google Scholar 

  23. Monsarrat B, Alvinerie P, Wright M, Dubois J, Gueritte-Voegelein F, Guenard D, Donehower RC, Rowinsky EK (1993) Hepatic metabolism and biliary excretion of Taxol in rats and humans. J Natl Cancer Inst Monogr 15:39–46

    PubMed  Google Scholar 

  24. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098

    PubMed  CAS  Google Scholar 

  25. Mould DR, Fleming GF, Darcy KM, Spriggs D (2006) Population analysis of a 24-h paclitaxel infusion in advanced endometrial cancer: a gynaecological oncology group study. Br J Clin Pharmacol 62:56–70

    Article  PubMed  CAS  Google Scholar 

  26. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655

    Article  PubMed  CAS  Google Scholar 

  27. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC (1993) Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 20:1–15

    PubMed  CAS  Google Scholar 

  28. Sapra P, Tyagi P, Allen TM (2005) Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2:369–381

    Article  PubMed  CAS  Google Scholar 

  29. Sharma US, Balasubramanian SV, Straubinger RM (1995) Pharmaceutical and physical properties of paclitaxel (Taxol) complexes with cyclodextrins. J Pharm Sci 84:1223–1230

    Article  PubMed  CAS  Google Scholar 

  30. Sonnichsen DS, Hurwitz CA, Pratt CB, Shuster JJ, Relling MV (1994) Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors. J Clin Oncol 12:532–538

    PubMed  CAS  Google Scholar 

  31. Sparreboom A, Loos WJ, Verweij J, de Vos AI, van der Burg ME, Stoter G, Nooter K (1998) Quantitation of Cremophor EL in human plasma samples using a colorimetric dye-binding microassay. Anal Biochem 255:171–175

    Article  PubMed  CAS  Google Scholar 

  32. Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH (1996) Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res 56:2112–2115

    PubMed  CAS  Google Scholar 

  33. Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH (1996) Tissue distribution, metabolism and excretion of paclitaxel in mice. Anticancer Drugs 7:78–86

    Article  PubMed  CAS  Google Scholar 

  34. Sparreboom A, van Zuylen L, Brouwer E, Loos WJ, de Bruijn P, Gelderblom H, Pillay M, Nooter K, Stoter G, Verweij J (1999) Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 59:1454–1457

    PubMed  CAS  Google Scholar 

  35. Sparreboom A, Verweij J, van der Burg ME, Loos WJ, Brouwer E, Vigano L, Locatelli A, de Vos AI, Nooter K, Stoter G, Gianni L (1998) Disposition of Cremophor EL in humans limits the potential for modulation of the multidrug resistance phenotype in vivo. Clin Cancer Res 4:1937–1942

    PubMed  CAS  Google Scholar 

  36. Spigel SC, Jones SF, Greco FA (2002) S-8184 vitamin E paclitaxel emulsion: preclinical and phase 1 data. Proc Am Soc Clin Oncol 21. Abstract no. 406

  37. Straubinger RM, Balasubramanian SV (2005) Preparation and characterization of taxane-containing liposomes. Methods Enzymol 391:97–117

    Article  PubMed  CAS  Google Scholar 

  38. van den Bongard HJ, Mathot RA, van Tellingen O, Schellens JH, Beijnen JH (2002) A population analysis of the pharmacokinetics of Cremophor EL using nonlinear mixed-effect modelling. Cancer Chemother Pharmacol 50:16–24

    Article  PubMed  Google Scholar 

  39. van Tellingen O, Beijnen JH, Verweij J, Scherrenburg EJ, Nooijen WJ, Sparreboom A (1999) Rapid esterase-sensitive breakdown of polysorbate 80 and its impact on the plasma pharmacokinetics of docetaxel and metabolites in mice. Clin Cancer Res 5:2918–2924

    PubMed  Google Scholar 

  40. van Tellingen O, Huizing MT, Panday VR, Schellens JH, Nooijen WJ, Beijnen JH (1999) Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients. Br J Cancer 81:330–335

    Article  PubMed  Google Scholar 

  41. van Zuylen L, Karlsson MO, Verweij J, Brouwer E, de Bruijn P, Nooter K, Stoter G, Sparreboom A (2001) Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 47:309–318

    Article  PubMed  Google Scholar 

  42. van Zuylen L, Verweij J, Sparreboom A (2001) Role of formulation vehicles in taxane pharmacology. Invest New Drugs 19:125–141

    Article  PubMed  Google Scholar 

  43. Walle T, Walle UK, Kumar GN, Bhalla KN (1995) Taxol metabolism and disposition in cancer patients. Drug Metab Dispos 23:506–512

    PubMed  CAS  Google Scholar 

  44. Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, Baker JR Jr, Van Echo DA, Von Hoff DD, Leyland-Jones B (1990) Hypersensitivity reactions from taxol. J Clin Oncol 8:1263–1268

    PubMed  CAS  Google Scholar 

  45. Wiernik PH, Schwartz EL, Einzig A, Strauman JJ, Lipton RB, Dutcher JP (1987) Phase I trial of taxol given as a 24-hour infusion every 21 days: responses observed in metastatic melanoma. J Clin Oncol 5:1232–1239

    PubMed  CAS  Google Scholar 

  46. Wild MD, Walle UK, Walle T (1995) Extensive and saturable accumulation of paclitaxel by the human platelet. Cancer Chemother Pharmacol 36:41–44

    Article  PubMed  CAS  Google Scholar 

  47. Windebank AJ, Blexrud MD, de Groen PC (1994) Potential neurotoxicity of the solvent vehicle for cyclosporine. J Pharmacol Exp Ther 268:1051–1056

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Louis Goedhals, Dr. Young Lee, and Dr. Jan Vermorken for leading the clinical study at their study site. This study was supported by Sonus Pharmaceuticals, Inc. This clinical study was performed by Sonus Pharmaceuticals, Inc., and the modeling was supported by Sonus Pharmaceuticals. Jürgen Bulitta was supported by a post-doctoral fellowship from Johnson & Johnson.

Conflicts of interest statement

The work presented in this manuscript was supported by Sonus Pharmaceuticals, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Appendices

Appendix

Mechanistic model for drug release from Tocosol Paclitaxel nanodroplets

The following equations describe the amount of paclitaxel in nanodroplets (A Nano) and in the unstirred water layer (A Layer) (see also Fig. 1):

$$ \frac{{{\text{d}}A_{\text{Nano}} }}{{{\text{d}}t}} = F_{\text{Tocosol}} \cdot R_{\text{Input}} - {\text{ka}}_{1} \cdot \left( {1 - \frac{{C_{\text{Layer}} }}{{C_{\text{Sol}} }}} \right) \cdot A_{\text{Nano}} $$
(A1)
$$ \frac{{{\text{d}}A_{\text{Layer}} }}{{{\text{d}}t}} = {\text{ka}}_{1} \cdot \left( {1 - \frac{{C_{\text{Layer}} }}{{C_{\text{Sol}} }}} \right) \cdot A_{\text{Nano}} - {\text{ka}}_{2} \cdot A_{\text{Layer}} $$
(A2)

where C Sol is the solubility of unbound paclitaxel in the volume of distribution for nanodroplets (V Nano), C Layer is the paclitaxel concentration in the unstirred water layer, R Input is the zero-order input into the nanodroplet compartment, and F Tocosol is the relative bioavailability of Tocosol Paclitaxel compared to Taxol. The release of drug from nanodroplets into the unstirred water layer is described by the first-order rate constant ka1 and the transfer of drug from the unstirred water layer to the central and peripheral compartment by the first-order rate constant ka2 (Fig. 1). Initial conditions for A Nano and A Layer are zero.

If ka2 is much larger than ka1, A Layer will show a rapid initial rise and thereafter the differential dA Layer/dt will be very small compared to dA Nano/dt. In this situation, the quasi-stationary solution for A Layer that is valid after the rapid initial rise can be calculated by setting the differential dA Layer/dt to zero and solving for A Layer. This yields:

$$ A_{\text{Layer}} = \frac{{{\text{ka}}_{1} \cdot A_{\text{Nano}} }}{{{\text{ka}}_{2} + \frac{{{\text{ka}}_{1} \cdot A_{\text{Nano}} }}{{C_{\text{Sol}} \cdot V_{\text{Layer}} }}}}. $$
(A3)

The V Layer represents the volume of the unstirred water layer. Inserting this equation into Eq. A1 yields the following equation for the mixed-order (Michaelis–Menten) process from the nanodroplet to the central compartment:

$$ \begin{aligned} \frac{{{\text{d}}A_{\text{Nano}} }}{{{\text{d}}t}} = & F_{\text{Tocosol}} \cdot R_{\text{Input}} - \frac{{{\text{ka}}_{ 2} \cdot C_{\text{Sol}} \cdot V_{\text{Layer}} \cdot A_{\text{Nano}} }}{{\frac{{{\text{ka}}_{ 2} \cdot C_{\text{Sol}} \cdot V_{\text{Layer}} }}{{{\text{ka}}_{ 1} }} + A_{\text{Nano}} }} \\ = & F_{\text{Tocosol}} \cdot R_{\text{Input}} - \frac{{{\text{Vmax}} \cdot A_{\text{Nano}} }}{{{\text{AN}}_{ 5 0} + A_{\text{Nano}} }}. \\ \end{aligned} $$
(A4)

The maximum rate of drug transfer is denoted as V max and is equal to the product of ka2, C Sol, and V Layer. The amount of drug in the nanodroplet compartment (AN50) that results in a transfer rate of 50% of V max is V max/ka1. Based on the final estimates, we confirmed that this quasi-stationary solution is an accurate approximation of the full set of differential equations.

The product of ka2 and V Layer is the clearance from the unstirred water layer (CLLayer) which is identifiable, whereas the individual terms are not. Therefore, a mixed-order transfer from the nanodroplet to the central compartment can be explained mechanistically by solubility-limited transfer through an unstirred water layer.

Output equation for plasma ultrafiltrate for nanodroplet formulation

Blood samples drawn during the release phase of Tocosol Paclitaxel nanodroplets contain nanodroplets with paclitaxel. This unreleased paclitaxel was assumed to be in part released during the processing of blood samples. Due to the vigorous conditions during centrifugation, we assumed that the unstirred water layer is less important. The release of paclitaxel from nanodroplets into plasma was described by a first-order process that becomes saturated, if the unbound plasma concentration approaches the estimated solubility limit (Fig. 1). This yields the following equations for the amounts of drug in nanodroplets in a blood sample (A Nano,S) and in the blood sample excluding drug in nanodroplets (A Blood,S):

$$ \frac{{{\text{d}}A_{{{\text{Nano}},{\text{S}}}} }}{{{\text{d}}t}} = - {\text{ka}} \cdot A_{{{\text{Nano}},{\text{S}}}} \cdot \left( {1 - \frac{{A_{{{\text{Blood}},{\text{S}}}} }}{{V_{\text{Sample}} \cdot {\text{BF}}_{\text{TOC}} \cdot C_{\text{Sol}} }}} \right) $$
(A5)
$$ \frac{{{\text{d}}A_{\text{Blood,S}} }}{{{\text{d}}t}} = {\text{ka}} \cdot A_{\text{Nano,S}} \cdot \left( { 1- \frac{{A_{\text{Blood,S}} }}{{V_{\text{Sample}} \cdot {\text{BF}}_{\text{TOC}} \cdot C_{\text{Sol}} }}} \right). $$
(A6)

The binding factor for Tocosol paclitaxel (BFTOC) was assumed to be constant during sample handling, as the saturable component of protein binding was negligible for high unbound concentrations. The first-order release rate constant under sample handling conditions is denoted as ka. The paclitaxel amount in sampled blood excluding drug in nanodroplets (A Blood,S) divided by the sample volume (V Sample) and by the binding factor BFTOC yields the unbound plasma concentration. The initial condition was A Nano·V Sample/V Nano for A Nano,S and the unbound concentration in central compartment (C1) multiplied by V Sample and BFTOC for A Blood,S.

These two differential equations were solved in Maple and the solution was used as the output equation for the paclitaxel concentration in plasma ultrafiltrate for Tocosol Paclitaxel [E(t Proc), N1, and N2 are intermediary variables to simplify the equations]:

$$ E\left( {t_{\text{Proc}} } \right) = { \exp }\left( {\frac{{{\text{ka}} \cdot \left( {A_{\text{Nano}} - V_{\text{Nano}} \cdot C_{\text{Sol}} \cdot {\text{BF}}_{\text{TOC}} + V_{\text{Nano}} \cdot {\text{BF}}_{\text{TOC}} \cdot {\text{C1}}} \right) \cdot t_{\text{Proc}} }}{{V_{\text{Nano}} \cdot {\text{BF}}_{\text{TOC}} \cdot C_{\text{Sol}} }}} \right) $$
(A7)
$$ {\text{N1}} = - C_{\text{Sol}} \cdot A_{\text{Nano}} + A_{\text{Nano}} \cdot {\text{C1}} - V_{\text{Nano}} \cdot C_{\text{Sol}} \cdot {\text{BF}}_{\text{TOC}} \cdot {\text{C1}} $$
(A8)
$$ {\text{N2}} = V_{\text{Nano}} \cdot {\text{BF}}_{\text{TOC}} \cdot {\text{C1}}^{ 2} + C_{\text{Sol}} \cdot E\left( {t_{\text{Proc}} } \right) \cdot {\rm A}_{\text{Nano}} $$
(A9)
$$ A_{\text{blood,S}} \left( {t_{\text{Proc}} } \right) = \frac{{V_{\text{Sample}} \cdot {\text{BF}}_{\text{TOC}} \cdot \left[ {{\text{N1}} + {\text{N2}}} \right]}}{{ - {\text{BF}}_{\text{TOC}} \cdot C_{\text{Sol}} \cdot V_{\text{Nano}} + V_{\text{Nano}} \cdot {\text{BF}}_{\text{TOC}} \cdot {\text{C1}} + E\left( {t_{\text{Proc}} } \right) \cdot A_{\text{Nano}} }}. $$
(A10)

Dividing the amount of paclitaxel in the blood sample (excluding the unreleased amount in nanodroplets) at the end of sample processing (t Proc) by the sample volume and the binding factor yields the output equation for the concentration in plasma ultrafiltrate for Tocosol Paclitaxel:

$$ {\text{Cu}}\left( {t_{\text{Proc}} } \right) = \frac{{A_{\text{blood,S}} \left( {t_{\text{Proc}} } \right)}}{{V_{\text{Sample}} \cdot {\text{BF}}_{\text{TOC}} }}. $$
(A11)

We assumed an average time of sample processing of 30 min according to the procedures described in the clinical protocol and estimated the half-life of the first-order release rate constant ka. The sample volume (V Sample) was arbitrarily set to 1 L, as this choice did not influence the results.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulitta, J.B., Zhao, P., Arnold, R.D. et al. Mechanistic population pharmacokinetics of total and unbound paclitaxel for a new nanodroplet formulation versus Taxol in cancer patients. Cancer Chemother Pharmacol 63, 1049–1063 (2009). https://doi.org/10.1007/s00280-008-0827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0827-2

Keywords

Navigation