Skip to main content
Log in

Different effects of lansoprazole and rabeprazole on the plasma voriconazole trough levels in allogeneic hematopoietic cell transplant recipients

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Voriconazole (VRC) is widely used as prophylaxis and in the treatment of invasive fungal disease (IFD) after allogeneic hematopoietic cell transplantation (HCT). We retrospectively examined the results of VRC therapeutic drug monitoring (TDM) in allogeneic HCT recipients. A total of 474 samples were obtained from 59 adult patients who received VRC during the first 100 days following HCT between 2009 and 2014 in our institute. Seventeen patients received VRC for prophylaxis of IFD, and 42 received VRC for the empirical or preemptive therapy for IFD. A total of 299 samples (63 %) were obtained during the administration of the intravenous form of VRC. The median VRC daily dose based on the actual body weight was 6.68 mg/kg/day (range, 1.92–10.41 mg/kg/day). The median VRC trough level was 0.99 mg/l (range, <0.09–5.45 mg/l). The multivariate analysis using a logistic regression model demonstrated significantly higher VRC trough levels (≥1.0 mg/l) in males (P < 0.001), empirical or preemptive therapy (P = 0.002), VRC daily dose based on the actual body weight ≥7 mg/kg/day (P < 0.001), and concomitant use of lansoprazole as compared to rabeprazole (P < 0.001). The concomitant use of calcineurin inhibitors and corticosteroids had no effects on VRC trough levels in multivariate analysis. These data suggest that lansoprazole and rabeprazole have different effects on the plasma VRC trough levels in the allogeneic HCT recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Girmenia C, Ferretti A, Barberi W (2014) Epidemiology and risk factors for invasive fungal diseases in hematopoietic stem cell transplantation. Curr Opin Hematol 21:459–465

    Article  PubMed  Google Scholar 

  2. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Sylvester R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415

    Article  CAS  PubMed  Google Scholar 

  3. Wingard JR, Carter SL, Walsh TJ, Kurtzberg J, Small TN, Baden LR, Gersten ID, Mendizabal AM, Leather HL, Confer DL, Maziarz RT, Stadtmauer EA, Bolaños-Meade J, Brown J, Dipersio JF, Boeckh M, Marr KA (2010) Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood 116:5111–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cordonnier C, Rovira M, Maertens J, Olavarria E, Faucher C, Bilger K, Pigneux A, Cornely OA, Ullmann AJ, Bofarull RM, de la Cámara R, Weisser M, Liakopoulou E, Abecasis M, Heussel CP, Pineau M, Ljungman P, Einsele H (2010) Voriconazole for secondary prophylaxis of invasive fungal infections in allogeneic stem cell transplant recipients: results of the VOSIFI study. Haematologica 95:1762–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takagi S, Araoka H, Uchida N, Uchida Y, Kaji D, Ota H, Nishida A, Ishiwata K, Tsuji M, Yamamoto H, Ito T, Matsuno N, Yamamoto G, Asano-Mori Y, Hayashi M, Izutsu K, Masuoka K, Wake A, Makino S, Yoneyama A, Taniguchi S (2014) A prospective feasibility study of primary prophylaxis against invasive fungal disease with voriconazole following umbilical cord blood transplantation with fludarabine-based conditioning. Int J Hematol 99:652–658

    Article  CAS  PubMed  Google Scholar 

  6. Theuretzbacher U, Ihle F, Derendorf H (2006) Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet 45:649–663

    Article  CAS  PubMed  Google Scholar 

  7. Owusu Obeng A, Egelund EF, Alsultan A, Peloquin CA, Johnson JA (2014) CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy 34:703–718

    Article  CAS  PubMed  Google Scholar 

  8. Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH, Song KH, Choe PG, Kim NJ, Jang IJ, Oh MD, Yu KS (2012) The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis 55:1080–1087

    Article  CAS  PubMed  Google Scholar 

  9. Karthaus M, Lehrnbecher T, Lipp HP, Kluge S, Buchheidt D (2015) Therapeutic drug monitoring in the treatment of invasive aspergillosis with voriconazole in cancer patients—an evidence-based approach. Ann Hematol 94:547–556

    Article  CAS  PubMed  Google Scholar 

  10. Elewa H, El-Mekaty E, El-Bardissy A, Ensom MH, Wilby KJ (2015) Therapeutic drug monitoring of voriconazole in the management of invasive fungal infections: a critical review. Clin Pharmacokinet 54:1223–1235

    Article  CAS  PubMed  Google Scholar 

  11. Hamada Y, Tokimatsu I, Mikamo H, Kimura M, Seki M, Takakura S, Ohmagari N, Takahashi Y, Kasahara K, Matsumoto K, Okada K, Igarashi M, Kobayashi M, Mochizuki T, Nishi Y, Tanigawara Y, Kimura T, Takesue Y (2013) Practice guidelines for therapeutic drug monitoring of voriconazole: a consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J Infect Chemother 19:381–392

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW (2014) Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 69:1162–1176

    Article  CAS  PubMed  Google Scholar 

  13. Groll AH, Kolve H, Ehlert K, Paulussen M, Vormoor J (2004) Pharmacokinetic interaction between voriconazole and ciclosporin A following allogeneic bone marrow transplantation. J Antimicrob Chemother 53:113–114

    Article  CAS  PubMed  Google Scholar 

  14. Mori T, Kato J, Yamane A, Ono Y, Shimizu T, Okamoto S (2009) Drug interaction between voriconazole and calcineurin inhibitors in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant 44:371–374

    Article  CAS  PubMed  Google Scholar 

  15. Trifilio SM, Scheetz MH, Pi J, Mehta J (2010) Tacrolimus use in adult allogeneic stem cell transplant recipients receiving voriconazole: preemptive dose modification and therapeutic drug monitoring. Bone Marrow Transplant 45:1352–1356

    Article  CAS  PubMed  Google Scholar 

  16. Gautier-Veyret E, Fonrose X, Tonini J, Thiebaut-Bertrand A, Bartoli M, Quesada JL, Bulabois CE, Cahn JY, Stanke-Labesque F (2015) Variability of voriconazole plasma concentrations after allogeneic hematopoietic stem cell transplantation: impact of cytochrome P450 polymorphisms and comedications on initial and subsequent trough levels. Antimicrob Agents Chemother 59:2305–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trifilio S, Ortiz R, Pennick G, Verma A, Pi J, Stosor V, Zembower T, Mehta J (2005) Voriconazole therapeutic drug monitoring in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant 35:509–513

    Article  CAS  PubMed  Google Scholar 

  18. Trifilio S, Pennick G, Pi J, Zook J, Golf M, Kaniecki K, Singhal S, Williams S, Winter J, Tallman M, Gordon L, Frankfurt O, Evens A, Mehta J (2007) Monitoring plasma voriconazole levels may be necessary to avoid subtherapeutic levels in hematopoietic stem cell transplant recipients. Cancer 109:1532–1535

    Article  CAS  PubMed  Google Scholar 

  19. Trifilio S, Singhal S, Williams S, Frankfurt O, Gordon L, Evens A, Winter J, Tallman M, Pi J, Mehta J (2007) Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transplant 40:451–456

    Article  CAS  PubMed  Google Scholar 

  20. Trifilio SM, Yarnold PR, Scheetz MH, Pi J, Pennick G, Mehta J (2009) Serial plasma voriconazole concentrations after allogeneic hematopoietic stem cell transplantation. Antimicrob Agents Chemother 53:1793–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’for medical statistics. Bone Marrow Transplant 48:452–458

    Article  CAS  PubMed  Google Scholar 

  22. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Muñoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaoutis T, Bennett JE (2008) Revised definitions of invasive fungal disease from the European organization for research and treatment of cancer/invasive fungal infections cooperative group and the national institute of allergy and infectious diseases mycoses study group (EORTC/MSG) consensus group. Clin Infect Dis 46:1813–1821

    Article  PubMed  PubMed Central  Google Scholar 

  23. Amigues I, Cohen N, Chung D, Seo SK, Plescia C, Jakubowski A, Barker J, Papanicolaou GA (2010) Hepatic safety of voriconazole after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 16:46–52

    Article  CAS  PubMed  Google Scholar 

  24. Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ (2012) Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother 56:4793–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cojutti P, Candoni A, Forghieri F, Isola M, Zannier ME, Bigliardi S, Luppi M, Fanin R, Pea F (2016) Variability of voriconazole trough levels in haematological patients: influence of co-medications with CYP inhibitors and/or with CYP inhibitors plus CYP inducers. Basic Clin Pharmacol Toxicol 118:474–479

    Article  CAS  PubMed  Google Scholar 

  26. Hoenigl M, Duettmann W, Raggam RB, Seeber K, Troppan K, Fruhwald S, Prueller F, Wagner J, Valentin T, Zollner-Schwetz I, Wölfler A, Krause R (2013) Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies. Antimicrob Agents Chemother 57:3262–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chu HY, Jain R, Xie H, Pottinger P, Fredricks DN (2013) Voriconazole therapeutic drug monitoring: retrospective cohort study of the relationship to clinical outcomes and adverse events. BMC Infect Dis 13:105

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O (2008) Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 46:201–211

    Article  CAS  PubMed  Google Scholar 

  29. Racil Z, Winterova J, Kouba M, Zak P, Malaskova L, Buresova L, Toskova M, Lengerova M, Kocmanova I, Weinbergerova B, Timilsina S, Rolencova M, Cetkovsky P, Mayer J (2012) Monitoring trough voriconazole plasma concentrations in haematological patients: real life multicentre experience. Mycoses 55:483–492

    Article  CAS  PubMed  Google Scholar 

  30. Boyd NK, Zoellner CL, Swancutt MA, Bhavan KP (2012) Utilization of omeprazole to augment subtherapeutic voriconazole concentrations for treatment of Aspergillus infections. Antimicrob Agents Chemother 56:6001–6002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blume H, Donath F, Warnke A, Schug BS (2006) Pharmacokinetic drug interaction profiles of proton pump inhibitors. Drug Saf 29:769–784

    Article  CAS  PubMed  Google Scholar 

  32. Wedemeyer RS, Blume H (2014) Pharmacokinetic drug interaction profiles of proton pump inhibitors: an update. Drug Saf 37:201–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zvyaga T, Chang SY, Chen C, Yang Z, Vuppugalla R, Hurley J, Thorndike D, Wagner A, Chimalakonda A, Rodrigues AD (2012) Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: focus on cytochrome P450 2C19. Drug Metab Dispos 40:1698–1711

    Article  CAS  PubMed  Google Scholar 

  34. Li XQ, Andersson TB, Ahlström M, Weidolf L (2004) Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos 32:821–827

    Article  CAS  PubMed  Google Scholar 

  35. Niece KL, Boyd NK, Akers KS (2015) In vitro study of the variable effects of proton pump inhibitors on voriconazole. Antimicrob Agents Chemother 59:5548–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, Haefeli WE, Mikus G (2009) CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol 49:196–204

    Article  CAS  PubMed  Google Scholar 

  37. Hassan A, Burhenne J, Riedel KD, Weiss J, Mikus G, Haefeli WE, Czock D (2011) Modulators of very low voriconazole concentrations in routine therapeutic drug monitoring. Ther Drug Monit 33:86–93

    Article  CAS  PubMed  Google Scholar 

  38. Levin MD, den Hollander JG, van der Holt B, Rijnders BJ, van Vliet M, Sonneveld P, van Schaik RH (2007) Hepatotoxicity of oral and intravenous voriconazole in relation to cytochrome P450 polymorphisms. J Antimicrob Chemother 60:1104–1107

    Article  CAS  PubMed  Google Scholar 

  39. Matsumoto K, Ikawa K, Abematsu K, Fukunaga N, Nishida K, Fukamizu T, Shimodozono Y, Morikawa N, Takeda Y, Yamada K (2009) Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents 34:91–94

    Article  CAS  PubMed  Google Scholar 

  40. Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S (1998) Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit 20:243–247

    Article  CAS  PubMed  Google Scholar 

  41. Sugimoto K, Uno T, Yamazaki H, Tateishi T (2008) Limited frequency of the CYP2C19* 17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 65:437–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all of the physicians and staff at the hospital in this study. A.T. received research grants from pfizer. The other authors declare no competing financial interests.

Author contributors

T.Y. and T.K. designed the research, analyzed data, and wrote the manuscript; T.K., S.K., S.T., and A.T. performed transplantation; and all authors contributed to write the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Konuma.

Ethics declarations

The institutional review board of the Institute of Medical Science, The University of Tokyo, has approved this retrospective study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Takeo Yasu and Takaaki Konuma contributed equally to this work.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Figure S1

(PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasu, T., Konuma, T., Kato, S. et al. Different effects of lansoprazole and rabeprazole on the plasma voriconazole trough levels in allogeneic hematopoietic cell transplant recipients. Ann Hematol 95, 1845–1851 (2016). https://doi.org/10.1007/s00277-016-2782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2782-z

Keywords

Navigation