Skip to main content

Advertisement

Log in

The predictive value of selected serum microRNAs for acute GVHD by TaqMan MicroRNA arrays

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Currently, the diagnosis of acute graft-versus-host disease (aGVHD) is mainly based on clinical symptoms and biopsy results. This study was designed to further explore new no noninvasive biomarkers for aGVHD prediction/diagnosis. We profiled miRNAs in serum pools from patients with aGVHD (grades II–IV) (n = 9) and non-aGVHD controls (n = 9) by real-time qPCR-based TaqMan MicroRNA arrays. Then, predictive models were established using related miRNAs (n = 38) and verified by a double-blind trial (n = 54). We found that miR-411 was significantly down regulated when aGVHD developed and recovered when aGVHD was controlled, which demonstrated that miR-411 has potential as an indicator for aGVHD monitoring. We developed and validated a predictive model and a diagnostic model for aGVHD. The predictive model included two miRNAs (miR-26b and miR-374a), which could predict an increased risk for aGVHD 1 or 2 weeks in advance, with an AUC, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) of 0.722, 76.19 %, and 69.70 %, respectively. The diagnostic model included three miRNAs (miR-28-5p, miR-489, and miR-671-3p) with an AUC, PPV, and NPV of 0.841, 85.71 % and 83.33 %, respectively. Our results show that circulating miRNAs (miR-26b and miR-374a, miR-28-5p, miR-489 and miR-671-3p) may serve as biomarkers for the prediction and diagnosis of grades II–IV aGVHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pidala J (2011) Graft-vs-host disease following allogeneic hematopoietic cell transplantation. Cancer Control 18(4):268–276

    PubMed  Google Scholar 

  2. Gatza E, Choi SW (2015) Approaches for the prevention of graft-versus-host disease following hematopoietic cell transplantation. Int J Hematol Oncol 4(3):113–126. doi:10.2217/ijh.15.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. George SG, Jennings LB (1972) Effects of subliminal stimuli on dreams: further evidence against the Spence-Holland theory. Percept Mot Skills 35(1):251–257

    Article  CAS  PubMed  Google Scholar 

  4. Weissinger EM, Schiffer E, Hertenstein B, Ferrara JL, Holler E, Stadler M, Kolb HJ, Zander A, Zurbig P, Kellmann M, Ganser A (2007) Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 109(12):5511–5519. doi:10.1182/blood-2007-01-069757

    Article  CAS  PubMed  Google Scholar 

  5. Srinivasan R, Daniels J, Fusaro V, Lundqvist A, Killian JK, Geho D, Quezado M, Kleiner D, Rucker S, Espina V, Whiteley G, Liotta L, Petricoin E, Pittaluga S, Hitt B, Barrett AJ, Rosenblatt K, Childs RW (2006) Accurate diagnosis of acute graft-versus-host disease using serum proteomic pattern analysis. Exp Hematol 34(6):796–801. doi:10.1016/j.exphem.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  6. Zhang CY, Wang SH, Huang WR, Guo GH, Zhang ZH, Mou WJ, Yu L, Tian YP (2013) A novel differential predict model based on matrix-assisted laser ionization time-of-flight mass spectrometry and serum ferritin for acute graft-versus-host disease. Biomed Res Int 2013:563751. doi:10.1155/2013/563751

    PubMed  PubMed Central  Google Scholar 

  7. Ali AM, DiPersio JF, Schroeder MA (2016) The role of biomarkers in the diagnosis and risk stratification of acute graft-versus-host disease: a systematic review. Biol Blood Marrow Transplant. doi:10.1016/j.bbmt.2016.04.022

    Google Scholar 

  8. Ferrara JL, Levine JE, Reddy P, Holler E (2009) Graft-versus-host disease. Lancet 373(9674):1550–1561. doi:10.1016/S0140-6736(09)60237-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao B, Wang Y, Li W, Baker M, Guo J, Corbet K, Tsalik EL, Li QJ, Palmer SM, Woods CW, Li Z, Chao NJ, He YW (2013) Plasma microRNA signature as a noninvasive biomarker for acute graft-versus-host disease. Blood 122(19):3365–3375. doi:10.1182/blood-2013-06-510586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ranganathan P, Heaphy CE, Costinean S, Stauffer N, Na C, Hamadani M, Santhanam R, Mao C, Taylor PA, Sandhu S, He G, Shana’ah A, Nuovo GJ, Lagana A, Cascione L, Obad S, Broom O, Kauppinen S, Byrd JC, Caligiuri M, Perrotti D, Hadley GA, Marcucci G, Devine SM, Blazar BR, Croce CM, Garzon R (2012) Regulation of acute graft-versus-host disease by microRNA-155. Blood 119(20):4786–4797. doi:10.1182/blood-2011-10-387522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oberg K, Modlin IM, De Herder W, Pavel M, Klimstra D, Frilling A, Metz DC, Heaney A, Kwekkeboom D, Strosberg J, Meyer T, Moss SF, Washington K, Wolin E, Liu E, Goldenring J (2015) Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol 16(9):e435–e446. doi:10.1016/S1470-2045(15)00186-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vigorito AC, Campregher PV, Storer BE, Carpenter PA, Moravec CK, Kiem HP, Fero ML, Warren EH, Lee SJ, Appelbaum FR, Martin PJ, Flowers ME (2009) Evaluation of NIH consensus criteria for classification of late acute and chronic GVHD. Blood 114(3):702–708. doi:10.1182/blood-2009-03-208983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS, Sung JJ (2009) Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58(10):1375–1381. doi:10.1136/gut.2008.167817

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, Frazier ML, Killary AM, Sen S (2009) MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2(9):807–813. doi:10.1158/1940-6207.CAPR-09-0094

    Article  CAS  Google Scholar 

  16. Glazov EA, McWilliam S, Barris WC, Dalrymple BP (2008) Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol Biol Evol 25(5):939–948. doi:10.1093/molbev/msn045

    Article  CAS  PubMed  Google Scholar 

  17. Yin F, Battiwalla M, Ito S, Feng X, Chinian F, Melenhorst JJ, Koklanaris E, Sabatino M, Stroncek D, Samsel L, Klotz J, Hensel NF, Robey PG, Barrett AJ (2014) Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses. Stem Cells 32(5):1278–1288. doi:10.1002/stem.1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris AC, Ferrara JL, Braun TM, Holler E, Teshima T, Levine JE, Choi SW, Landfried K, Akashi K, Vander Lugt M, Couriel DR, Reddy P, Paczesny S (2012) Plasma biomarkers of lower gastrointestinal and liver acute GVHD. Blood 119(12):2960–2963. doi:10.1182/blood-2011-10-387357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luft T, Conzelmann M, Benner A, Rieger M, Hess M, Strohhaecker U, Gorner M, Hegenbart U, Ho AD, Dreger P (2007) Serum cytokeratin-18 fragments as quantitative markers of epithelial apoptosis in liver and intestinal graft-versus-host disease. Blood 110(13):4535–4542

    Article  CAS  PubMed  Google Scholar 

  20. Ferrara J (2015) All pain, no gain: Tc17 phantoms in GVHD. Blood 126(13):1525–1526. doi:10.1182/blood-2015-08-661512

    Article  CAS  PubMed  Google Scholar 

  21. Levine JE, Braun TM, Harris AC, Holler E, Taylor A, Miller H, Magenau J, Weisdorf DJ, Ho VT, Bolanos-Meade J, Alousi AM, Ferrara JL (2015) A prognostic score for acute graft-versus-host disease based on biomarkers: a multicentre study. Lancet Haematol 2(1):e21–e29. doi:10.1016/S2352-3026(14)00035-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. MacMillan ML, Robin M, Harris AC, DeFor TE, Martin PJ, Alousi A, Ho VT, Bolanos-Meade J, Ferrara JL, Jones R, Arora M, Blazar BR, Holtan SG, Jacobsohn D, Pasquini M, Socie G, Antin JH, Levine JE, Weisdorf DJ (2015) A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality. Biol Blood Marrow Transplant 21(4):761–767. doi:10.1016/j.bbmt.2015.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  23. Paczesny S (2013) Discovery and validation of graft-versus-host disease biomarkers. Blood 121(4):585–594. doi:10.1182/blood-2012-08-355990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujii H, Cuvelier G, She K, Aslanian S, Shimizu H, Kariminia A, Krailo M, Chen Z, McMaster R, Bergman A, Goldman F, Grupp SA, Wall DA, Gilman AL, Schultz KR (2008) Biomarkers in newly diagnosed pediatric-extensive chronic graft-versus-host disease: a report from the Children’s Oncology Group. Blood 111(6):3276–3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bacigalupo A (2011) Acute graft-versus-host disease. Immunotherapy 3(12):1419–1422. doi:10.2217/imt.11.133

    Article  PubMed  Google Scholar 

  26. Li J, Tan S, Kooger R, Zhang C, Zhang Y (2014) MicroRNAs as novel biological targets for detection and regulation. Chem Soc Rev 43(2):506–517. doi:10.1039/c3cs60312a

    Article  CAS  PubMed  Google Scholar 

  27. Backes C, Meese E, Keller A (2016) Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther. doi:10.1007/s40291-016-0221-4

    PubMed  Google Scholar 

  28. Takahashi N, Nakaoka T, Yamashita N (2012) Profiling of immune-related microRNA expression in human cord blood and adult peripheral blood cells upon proinflammatory stimulation. Eur J Haematol 88(1):31–38. doi:10.1111/j.1600-0609.2011.01707.x

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Smith BA, Iype J, Prestipino A, Pfeifer D, Grundmann S, Schmitt-Graeff A, Idzko M, Beck Y, Prinz G, Finke J, Duyster J, Zeiser R (2015) MicroRNA-155-deficient dendritic cells cause less severe GVHD through reduced migration and defective inflammasome activation. Blood 126(1):103–112. doi:10.1182/blood-2014-12-617258

    Article  CAS  PubMed  Google Scholar 

  30. Stickel N, Prinz G, Pfeifer D, Hasselblatt P, Schmitt-Graeff A, Follo M, Thimme R, Finke J, Duyster J, Salzer U, Zeiser R (2014) MiR-146a regulates the TRAF6/TNF-axis in donor T cells during GVHD. Blood 124(16):2586–2595. doi:10.1182/blood-2014-04-569046

    Article  CAS  PubMed  Google Scholar 

  31. Leonhardt F, Grundmann S, Behe M, Bluhm F, Dumont RA, Braun F, Fani M, Riesner K, Prinz G, Hechinger AK, Gerlach UV, Dierbach H, Penack O, Schmitt-Graff A, Finke J, Weber WA, Zeiser R (2013) Inflammatory neovascularization during graft-versus-host disease is regulated by alphav integrin and miR-100. Blood 121(17):3307–3318. doi:10.1182/blood-2012-07-442665

    Article  CAS  PubMed  Google Scholar 

  32. Sun Y, Oravecz-Wilson K, Mathewson N, Wang Y, McEachin R, Liu C, Toubai T, Wu J, Rossi C, Braun T, Saunders T, Reddy P (2015) Mature T cell responses are controlled by microRNA-142. J Clin Invest 125(7):2825–2840. doi:10.1172/JCI78753

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  34. Xia K, Zhang Y, Cao S, Wu Y, Guo W, Yuan W, Zhang S (2015) miR-411 regulated ITCH expression and promoted cell proliferation in human hepatocellular carcinoma cells. Biomed Pharmacother 70:158–163. doi:10.1016/j.biopha.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  35. Singh A, Willems E, Hafeez BB, Ong IM, Mehta SL, Verma AK (2016) Ultraviolet radiation-induced tumor necrosis factor alpha, which is linked to the development of cutaneous SCC, modulates differential epidermal microRNAs expression. Oncotarget. doi:10.18632/oncotarget.7595

    Google Scholar 

  36. Vosa U, Vooder T, Kolde R, Fischer K, Valk K, Tonisson N, Roosipuu R, Vilo J, Metspalu A, Annilo T (2011) Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer 50(10):812–822. doi:10.1002/gcc.20902

    Article  CAS  PubMed  Google Scholar 

  37. Girardot M, Pecquet C, Boukour S, Knoops L, Ferrant A, Vainchenker W, Giraudier S, Constantinescu SN (2010) miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood 116(3):437–445. doi:10.1182/blood-2008-06-165985

    Article  CAS  PubMed  Google Scholar 

  38. Kikkawa N, Hanazawa T, Fujimura L, Nohata N, Suzuki H, Chazono H, Sakurai D, Horiguchi S, Okamoto Y, Seki N (2010) miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer 103(6):877–884. doi:10.1038/sj.bjc.6605811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) A long noncoding RNA, CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. doi:10.1161/CIRCRESAHA.114.302476

    Google Scholar 

  40. Estep M, Armistead D, Hossain N, Elarainy H, Goodman Z, Baranova A, Chandhoke V, Younossi ZM (2010) Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 32(3):487–497. doi:10.1111/j.1365-2036.2010.04366.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff in the Department of Clinical Biochemistry and Department of Hematology at the Chinese PLA General Hospital for their support and guidance. This research was supported by the National Natural Science Foundation of China (NO.81501821, NO.21375133), the China Postdoctoral Science Foundation (No.2015M572760, 2016T90989), and the National High Technology Research and Development Program of China (863 Program) (2011AA 02A 111). Written consent for publication was obtained from either the patients or their relatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ping Tian.

Ethics declarations

Authorship and conflict of interest statements

Chunyan Zhang, Yaping Tian, Wenrong Huang designed the study. Shasha Men and Ting Wen recruited the samples and clinical information. Nan Bai, Pengjun Zhang and Hongli Tong performed real-time PCR test. Chunyan Zhang, Yuan Luo and Wenrong Huang performed data analysis and interpretation; Chunyan Zhang and Yaping Tian wrote the manuscript. The corresponding author and all of the authors have read and approved the final submitted manuscript. None of the authors had a personal or financial conflict of interest.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Bai, N., Huang, W. et al. The predictive value of selected serum microRNAs for acute GVHD by TaqMan MicroRNA arrays. Ann Hematol 95, 1833–1843 (2016). https://doi.org/10.1007/s00277-016-2781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2781-0

Keywords

Navigation