Skip to main content

Advertisement

Log in

Botulinum Toxin Enhances the Implantation Effect of Adipocytes in C57/BL6 Mice

  • Original Article
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Recently, many plastic surgeons have been using adipogenic-differentiated cell implantation for remodeling scars in patients. However, this technique is not a long-term solution because implanted cells disappear gradually. Therefore, we investigated a method to increase the grafted cell preservation rate by using an effective adjuvant, botulinum toxin.

Methods

The adipogenic-differentiated cells were subcutaneously injected in the dorsal area of C57/BL6 mice with or without botulinum toxin. Two and six weeks later we analyzed the residual volume and confirmed the characteristics of the implanted cells by real-time RT-PCR and immunohistochemistry.

Results

Two and six weeks after transplantation we found that the residual volume of the transplantation site was higher in the botulinum toxin-treated group than in the untreated group. We also confirmed that the residual transplanted area has characteristics of adipogenic tissue by histological analysis. Next, to determine the mechanism related to the enhanced preservation rate of grafted cells via treatment with botulinum toxin, we performed immunohistochemical staining for the angiogenesis-related marker CD31. We found that CD31 expression was higher in the botulinum toxin-treated group than in the untreated group.

Conclusion

We have shown that in vivo grafted adipocyte cell preservation can be enhanced by treatment with botulinum toxin as an adjuvant. We suggest that botulinum toxin further increases this graft preservation rate by enhancing angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ersek RA (1991) Transplantation of purified autologous fat: a 3-year follow-up is disappointing. Plast Reconstr Surg 87:219–227; discussion 228

    PubMed  CAS  Google Scholar 

  2. Ullmann Y, Hyams M, Ramon Y, Beach D, Peled IJ, Lindenbaum ES (1998) Enhancing the survival of aspirated human fat injected into nude mice. Plast Reconstr Surg 101:1940–1944

    Article  PubMed  CAS  Google Scholar 

  3. Cho SW, Kim SS, Rhie JW, Cho HM, Choi CY, Kim BS (2005) Engineering of volume-stable adipose tissues. Biomaterials 26:3577–3585

    Article  PubMed  CAS  Google Scholar 

  4. Eppley BL, Snyders RV Jr, Winkelmann T, Delfino JJ (1992) Autologous facial fat transplantation: improved graft maintenance by microbead bioactivation. J Oral Maxillofac Surg 50:477–482; discussion 482-483

    Article  PubMed  CAS  Google Scholar 

  5. Choi YS, Park SN, Suh H (2005) Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 26:5855–5863

    Article  PubMed  CAS  Google Scholar 

  6. Hemmrich K, von Heimburg D, Rendchen R, Di Bartolo C, Milella E, Pallua N (2005) Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 26:7025–7037

    Article  PubMed  CAS  Google Scholar 

  7. Jeon O, Ryu SH, Chung JH, Kim BS (2005) Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release 105:249–259

    Article  PubMed  CAS  Google Scholar 

  8. Kimura Y, Ozeki M, Inamoto T, Tabata Y (2003) Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials 24:2513–2521

    Article  PubMed  CAS  Google Scholar 

  9. Ashkenazi A, Silberstein S (2008) Botulinum toxin type A for the treatment of headache: why we say yes. Arch Neurol 65:146–149

    Article  PubMed  Google Scholar 

  10. Lew HL, Lee EH, Castaneda A, Klima R, Date E (2008) Therapeutic use of botulinum toxin type A in treating neck and upper-back pain of myofascial origin: a pilot study. Arch Phys Med Rehabil 89:75–80

    Article  PubMed  Google Scholar 

  11. Nix WA (2007) Botulinum toxin in chronic myofascial pain. Schmerz 21:467–468

    Article  PubMed  CAS  Google Scholar 

  12. Beer K, Waibel J (2007) Botulinum toxin type A enhances the outcome of fractional resurfacing of the cheek. J Drugs Dermatol 6:1151–1152

    PubMed  Google Scholar 

  13. Lee H, Saladi RN, Fox JL (2008) Cohort study on patient response to botulinum toxin cosmetic therapy. J Cosmet Dermatol 7:39–42

    Article  PubMed  Google Scholar 

  14. Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444:1092–1095

    Article  PubMed  CAS  Google Scholar 

  15. Morris JL, Jobling P, Gibbins IL (2001) Differential inhibition by botulinum neurotoxin A of cotransmitters released from autonomic vasodilator neurons. Am J Physiol Heart Circ Physiol 281:H2124–H2132

    PubMed  CAS  Google Scholar 

  16. Morris JL, Jobling P, Gibbins IL (2002) Botulinum neurotoxin A attenuates release of norepinephrine but not NPY from vasoconstrictor neurons. Am J Physiol Heart Circ Physiol 283:H2627–H2635

    PubMed  CAS  Google Scholar 

  17. Tang-Liu DD, Aoki KR, Dolly JO, de Paiva A, Houchen TL, Chasseaud LF, Webber C (2003) Intramuscular injection of 125I-botulinum neurotoxin-complex versus 125I-botulinum-free neurotoxin: time course of tissue distribution. Toxicon 42:461–469

    Article  PubMed  CAS  Google Scholar 

  18. Christman KL, Fang Q, Yee MS, Johnson KR, Sievers RE, Lee RJ (2005) Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials 26:1139–1144

    Article  PubMed  CAS  Google Scholar 

  19. Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94:1124–1132

    Article  PubMed  CAS  Google Scholar 

  20. Saban MR, Towner R, Smith N, Abbott A, Neeman M, Davis CA, Simpson C, Maier J, Mémet S, Wu XR, Saban R (2007) Lymphatic vessel density and function in experimental bladder cancer. BMC Cancer 7:219

    Article  PubMed  CAS  Google Scholar 

  21. Illouz YG (1988) Present results of fat injection. Aesthetic Plast Surg 12:175–181

    Article  PubMed  CAS  Google Scholar 

  22. Patrick CW Jr, Chauvin PB, Hobley J, Reece GP (1999) Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng 5:139–151

    Article  PubMed  CAS  Google Scholar 

  23. Patrick CW Jr, Zheng B, Johnston C, Reece GP (2002) Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng 8:283–293

    Article  PubMed  CAS  Google Scholar 

  24. Smahel J, Meyer V, Schutz K (1990) Vascular augmentation of free adipose tissue grafts. Eur J Plast Surg 13:742–748

    Article  Google Scholar 

  25. Cho SW, Gwak SJ, Kang SW, Bhang SH, Won Song KW, Yang YS, Choi CY, Kim BS (2006) Enhancement of angiogenic efficacy of human cord blood cell transplantation. Tissue Eng 12:1651–1661

    Article  PubMed  CAS  Google Scholar 

  26. Ansiaux R, Baudelet C, Cron GO, Segers J, Dessy C, Martinive P, De Wever J, Verrax J, Wauthier V, Beghein N, Grégoire V, Buc Calderon P, Feron O, Gallez B (2006) Botulinum toxin potentiates cancer radiotherapy and chemotherapy. Clin Cancer Res 12:1276–1283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2006-005-J02202), a grant from the Korea Health 21 R&D project, Ministry of Health & Welfare, Republic of Korea (A050569), and the Seoul Research and Business Development Program (10582).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sa Ik Bang or Daeho Cho.

Additional information

Daeho Cho and Sa Ik Bang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, M.K., Song, S.B., Cheon, S.Y. et al. Botulinum Toxin Enhances the Implantation Effect of Adipocytes in C57/BL6 Mice. Aesth Plast Surg 33, 722–729 (2009). https://doi.org/10.1007/s00266-009-9394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-009-9394-0

Keywords

Navigation