Skip to main content
Log in

The five year outcome of a clinical feasibility study using a biphasic construct with minced autologous cartilage to repair osteochondral defects in the knee

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Autologous minced cartilage has been used to repair cartilage defects. We have developed a biphasic cylindrical osteochondral construct for such use in human knees, and report the five year post-operative outcomes.

Methods

Ten patients with symptomatic osteochondral lesion at femoral condyles were treated by replacing pathological tissue with the osteochondral composites, each consisted a DL-poly-lactide-co-glycolide chondral phase and a DL-poly-lactide-co-glycolide/β-tricalcium phosphate osseous phase. A flat chamber between the two phases served as a reservoir to house double-minced (mechanical pulverization and enzymatical dissociation) autologous cartilage graft. The osteochondral lesion was drill-fashioned a pit of identical dimensions as the construct. Graft-laden construct was press fit to the pit. Post-operative outcome was evaluated using Knee Injury and Osteoarthritis Outcome Score (KOOS) up to five years. Regenerated tissue was sampled with arthroscopic needle biopsy for histology at one year, and imaged with magnetic resonance at one, three, and five years to evaluate the neocartilage with MOCART chart. Subchondral bone integration was evaluated with computed tomography at three and five years.

Results

Nine patients completed the five-year follow-up. Post-operative mean KOOS, except that of the “symptom” subscale, had been significantly higher than pre-operation from one year and maintained to five years. The change of MOCRAT scores of the regenerated cartilage paralleled the change of KOOS. The osseous phase remained mineralized during the five-year period, yet did not fully integrate with the host bone.

Conclusions

This novel construct for chondrocyte implantation yielded promising mid-term outcome. It repaired the osteochondral lesion with hyaline-like cartilage durable for at least five years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726–737

    PubMed  CAS  Google Scholar 

  2. Barber FA, Dockery WD (2011) A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthroscopy 27:60–64

    PubMed  Google Scholar 

  3. Barber FA, Dockery WD, Cowden CH 3rd (2013) The degradation outcome of biocomposite suture anchors made from poly L-lactide-co-glycolide and beta-tricalcium phosphate. Arthroscopy 29:1834–1839

    PubMed  Google Scholar 

  4. Barber FA, Dockery WD, Hrnack SA (2011) Long-term degradation of a poly-lactide co-glycolide/beta-tricalcium phosphate biocomposite interference screw. Arthroscopy 27:637–643

    PubMed  Google Scholar 

  5. Barber FA, Spenciner DB, Bhattacharyya S, Miller LE (2017) Biocomposite implants composed of poly(lactide-co-glycolide)/beta-tricalcium phosphate: systematic review of imaging, complication, and performance outcomes. Arthroscopy 33:683–689

    PubMed  Google Scholar 

  6. Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW et al (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg (Br) 87:640–645

    CAS  Google Scholar 

  7. Bekkers JE, Bartels LW, Vincken KL, Dhert WJ, Creemers LB, Saris DB (2013) Articular cartilage evaluation after TruFit plug implantation analyzed by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Am J Sports Med 41:1290–1295

    PubMed  Google Scholar 

  8. Bekkers JE, de Windt TS, Raijmakers NJ, Dhert WJ, Saris DB (2009) Validation of the knee injury and osteoarthritis outcome score (KOOS) for the treatment of focal cartilage lesions. Osteoarthr Cartil 17:1434–1439

    PubMed  CAS  Google Scholar 

  9. Berruto M, Delcogliano M, de Caro F, Carimati G, Uboldi F, Ferrua P et al (2014) Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med 42:1607–1617

    PubMed  Google Scholar 

  10. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    PubMed  CAS  Google Scholar 

  11. Brix M, Kaipel M, Kellner R, Schreiner M, Apprich S, Boszotta H et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40:625–632

    PubMed  Google Scholar 

  12. Chaipinyo K, Oakes BW, Van Damme MP (2004) The use of debrided human articular cartilage for autologous chondrocyte implantation: maintenance of chondrocyte differentiation and proliferation in type I collagen gels. J Orthop Res 22:446–455

    PubMed  CAS  Google Scholar 

  13. Chiang H, Kuo TF, Tsai CC, Lin MC, She BR, Huang YY et al (2005) Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J Orthop Res 23:584–593

    PubMed  Google Scholar 

  14. Chiang H, Liao CJ, Hsieh CH, Shen CY, Huang YY, Jiang CC (2013) Clinical feasibility of a novel biphasic osteochondral composite for matrix-associated autologous chondrocyte implantation. Osteoarthr Cartil 21:589–598

    PubMed  CAS  Google Scholar 

  15. Chiang H, Liao CJ, Wang YH, Huang HY, Chen CN, Hsieh CH et al (2010) Comparison of articular cartilage repair by autologous chondrocytes with and without in vitro cultivation. Tissue Eng Part C Methods 16:291–300

    PubMed  CAS  Google Scholar 

  16. Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc 24:2380–2387

    PubMed  Google Scholar 

  17. Cobaleda Aristizabal AF, Sanders EJ, Barber FA (2014) Adverse events associated with biodegradable lactide-containing suture anchors. Arthroscopy 30:555–560

    PubMed  Google Scholar 

  18. Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B et al (2011) Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 39:1170–1179

    PubMed  Google Scholar 

  19. Delcogliano M, Menghi A, Placella G, Speziali A, Cerulli G, Carimati G, et al. (2014) Treatment of osteochondritis dissecans of the knee with a biomimetic scaffold. A prospective multicenter study. Joints 2:102–108

  20. Dhollander AA, Liekens K, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D et al (2012) A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy 28:225–233

    PubMed  Google Scholar 

  21. Dipaola JD, Nelson DW, Colville MR (1991) Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy 7:101–104

    PubMed  CAS  Google Scholar 

  22. Edwards DJ, Hoy G, Saies AD, Hayes MG (1994) Adverse reactions to an absorbable shoulder fixation device. J Shoulder Elb Surg 3:230–233

    CAS  Google Scholar 

  23. Faour O, Dimitriou R, Cousins CA, Giannoudis PV (2011) The use of bone graft substitutes in large cancellous voids: any specific needs? Injury 42(Suppl 2):S87–S90

    PubMed  Google Scholar 

  24. Filardo G, Kon E, Di Martino A, Busacca M, Altadonna G, Marcacci M (2013) Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med 41:1786–1793

    PubMed  Google Scholar 

  25. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M (2013) Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 29:174–186

    PubMed  Google Scholar 

  26. Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M et al (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18:434–447

    PubMed  PubMed Central  Google Scholar 

  27. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13:203–210

    PubMed  CAS  Google Scholar 

  28. Guhl JF (1982) Arthroscopic treatment of osteochondritis dissecans. Clin Orthop Relat Res:65–74

  29. Heir S, Nerhus TK, Rotterud JH, Loken S, Ekeland A, Engebretsen L et al (2010) Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 38:231–237

    PubMed  Google Scholar 

  30. Joshi N, Reverte-Vinaixa M, Diaz-Ferreiro EW, Dominguez-Oronoz R (2012) Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med 40:1289–1295

    PubMed  Google Scholar 

  31. Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT (2001) The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res:42–50

  32. Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B et al (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41:693–701

    PubMed  CAS  Google Scholar 

  33. Kumar CY, Nalini KB, Menon J, Patro DK, Banerji BH (2013) Calcium sulfate as bone graft substitute in the treatment of osseous bone defects, a prospective study. J Clin Diagn Res 7:2926–2928

    Google Scholar 

  34. Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY (2002) Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res 59:676–681

    PubMed  CAS  Google Scholar 

  35. Liao CJ, Lin YJ, Chiang H, Chiang SF, Wang YH, Jiang CC (2007) Injecting partially digested cartilage fragments into a biphasic scaffold to generate osteochondral composites in a nude mice model. J Biomed Mater Res A 81:567–577

    PubMed  Google Scholar 

  36. Lu Y, Dhanaraj S, Wang Z, Bradley DM, Bowman SM, Cole BJ et al (2006) Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res 24:1261–1270

    PubMed  Google Scholar 

  37. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23

    PubMed  Google Scholar 

  38. Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H et al (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52:310–319

    PubMed  Google Scholar 

  39. McCormick F, Yanke A, Provencher MT, Cole BJ (2008) Minced articular cartilage—basic science, surgical technique, and clinical application. Sports Med Arthrosc Rev 16:217–220

    PubMed  Google Scholar 

  40. Ntagiopoulos PG, Demey G, Tavernier T, Dejour D (2015) Comparison of resorption and remodeling of bioabsorbable interference screws in anterior cruciate ligament reconstruction. Int Orthop 39:697–706

    PubMed  Google Scholar 

  41. Pearce CJ, Gartner LE, Mitchell A, Calder JD (2012) Synthetic osteochondral grafting of ankle osteochondral lesions. Foot Ankle Surg 18:114–118

    PubMed  Google Scholar 

  42. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124

    PubMed  Google Scholar 

  43. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8:5744–5794

    CAS  Google Scholar 

  44. Sohn DH, Lottman LM, Lum LY, Kim SG, Pedowitz RA, Coutts RD et al (2002) Effect of gravity on localization of chondrocytes implanted in cartilage defects. Clin Orthop Relat Res:254–262

  45. Steinhagen J, Bruns J, Deuretzbacher G, Ruether W, Fuerst M, Niggemeyer O (2010) Treatment of osteochondritis dissecans of the femoral condyle with autologous bone grafts and matrix-supported autologous chondrocytes. Int Orthop 34:819–825

    PubMed  Google Scholar 

  46. Strauss EJ, Goodrich LR, Chen CT, Hidaka C, Nixon AJ (2005) Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model. Am J Sports Med 33:1647–1653

    PubMed  Google Scholar 

  47. Tamaddon M, Liu C (2018) Enhancing biological and biomechanical fixation of osteochondral scaffold: a grand challenge. Adv Exp Med Biol 1059:255–298

    PubMed  CAS  Google Scholar 

  48. Vasiliadis HS, Danielson B, Ljungberg M, McKeon B, Lindahl A, Peterson L (2010) Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med 38:943–949

    PubMed  Google Scholar 

  49. Verhaegen J, Clockaerts S, Van Osch GJ, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects—where is the evidence? Systematic review of literature. Cartilage 6:12–19

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheath PC et al (2003) Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000030062.92399.6a228-236

Download references

Funding

This study was funded by Exactech Taiwan Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsen Chiang.

Ethics declarations

Conflict of interest

Author, Chun Nan Chen, is an employee of BioGend Therapeutics Co., Ltd.; the corporation acquired Exactech Taiwan in 2018.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, TH., Jiang, CC., Lan, H.HC. et al. The five year outcome of a clinical feasibility study using a biphasic construct with minced autologous cartilage to repair osteochondral defects in the knee. International Orthopaedics (SICOT) 44, 1745–1754 (2020). https://doi.org/10.1007/s00264-020-04569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04569-y

Keywords

Navigation